Twinning of the e-plane is the dominant crystal -plastic deformation mechanism in calcite deformed below about 400 8C. Calcite in a twin domain has a different crystallographic orientation from the host calcite grain. So-called thin twins appear as thin black lines when viewed parallel to the twin plane at 200-320 £ magnification under a petrographic microscope. Thick twins viewed in the same way have a microscopically visible width of twinned material between black lines. Calcite e-twin width and morphology has been correlated with temperature of deformation in naturally deformed coarse-grained calcite. In this paper, we present a compilation and analysis of data from limestones of the frontal Alps (France and Switzerland) and the Appalachian Valley and Ridge and Plateau provinces (eastern United States) to document this temperature dependence. Mean calcite twin width correlates directly with temperature of deformation such that thin twins dominate below 170 8C and thick twins dominate above 200 8C. Above 250 8C dynamic recrystallization is an important deformation mechanism in calcite. Mean twin intensity (twin planes/mm) correlates negatively with temperature, and a cross plot of twin intensity with twin width can yield information about both strain and temperature of deformation. These relationships provide a deformation geothermometer for rocks that might otherwise yield little or no paleotemperature data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.