Context.-The College of American Pathologists has been producing cancer protocols since 1986 to aid pathologists in the diagnosis and reporting of cancer cases. Many pathologists use the included cancer case summaries as templates for dictation/data entry into the final pathology report. These summaries are now available in a computer-readable format with structured data elements for interoperability, packaged as ''electronic cancer checklists.'' Most major vendors of anatomic pathology reporting software support this model.Objectives.-To outline the development and advantages of structured electronic cancer reporting using the electronic cancer checklist model, and to describe its extension to cancer biomarkers and other aspects of cancer reporting.Data Sources.-Peer-reviewed literature and internal records of the College of American Pathologists.Conclusions.-Accurate and usable cancer biomarker data reporting will increasingly depend on initial capture of this information as structured data. This process will support the standardization of data elements and biomarker terminology, enabling the meaningful use of these datasets by pathologists, clinicians, tumor registries, and patients.
Lack of interoperability is one of the greatest challenges facing healthcare informatics. Recent interoperability efforts have focused primarily on data transmission and generally ignore data capture standardization. Structured Data Capture (SDC) is an open-source technical framework that enables the capture and exchange of standardized and structured data in interoperable data entry forms (DEFs) at the point of care. Some of SDC’s primary use cases concern complex oncology data such as anatomic pathology, biomarkers, and clinical oncology data collection and reporting. Its interoperability goals are the preservation of semantic, contextual, and structural integrity of the captured data throughout the data’s lifespan. SDC documents are written in eXtensible Markup Language (XML) and are therefore computer readable, yet technology agnostic—SDC can be implemented by any EHR vendor or registry. Any SDC-capable system can render an SDC XML file into a DEF, receive and parse an SDC transmission, and regenerate the original SDC form as a DEF or synoptic report with the response data intact. SDC is therefore able to facilitate interoperable data capture and exchange for patient care, clinical trials, cancer surveillance and public health needs, clinical research, and computable care guidelines. The usability of SDC-captured oncology data is enhanced when the SDC data elements are mapped to standard terminologies. For example, an SDC map to Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) enables aggregation of SDC data with other related data sets and permits advanced queries and groupings on the basis of SNOMED CT concept attributes and description logic. SDC supports terminology maps using separate map files or as terminology codes embedded in an SDC document.
PURPOSE The Medicare Access and CHIP Reauthorization Act of 2015 (MACRA) requires eligible clinicians to report clinical quality measures (CQMs) in the Merit-Based Incentive Payment System (MIPS) to maximize reimbursement. To determine whether structured data in electronic health records (EHRs) were adequate to report MIPS CQMs, EHR data aggregated by ASCO's CancerLinQ platform were analyzed. MATERIALS AND METHODS Using the CancerLinQ health technology platform, 19 Oncology MIPS (oMIPS) CQMs were evaluated to determine the presence of data elements (DEs) necessary to satisfy each CQM and the DE percent population with patient data (fill rates). At the time of this analysis, the CancerLinQ network comprised 63 active practices, representing eight different EHR vendors and containing records for more than 1.63 million unique patients with one or more malignant neoplasms (1.73 million cancer cases). RESULTS Fill rates for the 63 oMIPS-associated DEs varied widely among the practices. The average site had at least one filled DE for 52% of the DEs. Only 35% of the DEs were populated for at least one patient record in 95% of the practices. However, the average DE fill rate of all practices was 23%. No data were found at any practice for 22% of the DEs. Since any oMIPS CQM with an unpopulated DE component resulted in an inability to compute the measure, only two (10.5%) of the 19 oMIPS CQMs were computable for more than 1% of the patients. CONCLUSION Although EHR systems had relatively high DE fill rates for some DEs, underfilling and inconsistency of DEs in EHRs render automated oncology MIPS CQM calculations impractical.
AUTHORS' DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST Data Sharing to Support the Cancer Journey in the Digital EraThe following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated. Relationships are self-held unless noted. I 5 Immediate Family Member, Inst 5 My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO's conflict of interest policy, please refer to www.asco.org/rwc or jop.ascopubs.org/site/misc/ifc.xhtml.
e18074 Background: Physician reimbursement for care delivered to Medicare beneficiaries fundamentally changed with the 2015 MACRA legislation, requiring eligible clinicians to report quality measures in the Merit-Based Incentive Payment System (MIPS). To determine whether structured data in electronic health records (EHRs) were adequate to report MIPS results, EHR data ingested by ASCO’s CancerLinQ (CLQ) was analyzed. Methods: Nineteen MIPS measures specified for medical oncology, including 8 shared by other specialties, were retrieved from qpp.cms.gov and systematically evaluated to determine data elements necessary to satisfy each measure. The existence of corresponding data fields and completion of these fields with clinical data was analyzed according to EHR implementation in de-identified and aggregated CLQ data. Results: Five clinician informaticists reviewed the 19 oncology MIPS measures, and identified a consensus list of 52 discrete EHR data elements (DEs) that would be needed. CLQ-processed data from 4 commercial EHR systems implemented at 47 CLQ practices found structured data fields for 84% (43 of 52) of the DE, but fewer than half (46%) of these fields were ever populated and only 32% (17 of 52) of DE were recorded for > 20% of cases. Only 3-5 of 19 MIPS measures could be reliably reported based on data element availability by most practices in this sample set. There were minimal differences between the EHRs ability to encode MIPS DE. Elements most likely to be encoded were those for registration (birthdate, gender), billing (diagnosis, meds), vital signs and smoking status, while those seldom or never encoded related to care plans (tobacco, alcohol, pain management). Other DE rarely encoded were patient events occurring outside the oncology practice (receipt/completion of consultations, dates of hospice enrollment and death), which would be dependent on data exchange between work units and practice entities or, more likely, re-entry by oncology practices. Conclusions: Only a minority of DE required to satisfy MIPS criteria are available as discrete data fields in current EHRs, limiting automated reporting efforts. Improved data quality and completeness is needed to satisfy mandated reporting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.