A broad effort is underway to understand and harness the interaction between superconductors and spin-active color centers with an eye on hybrid quantum devices and novel imaging modalities of superconducting materials. Most work, however, overlooks the interplay between either system and the environment created by the color center host. Here we use a diamond scanning probe to investigate the spin dynamics of a single nitrogen-vacancy (NV) center proximal to a superconducting film. We find that the presence of the superconductor increases the NV spin coherence lifetime, a phenomenon we tentatively rationalize as a change in the electric noise due to a superconductorinduced redistribution of charge carriers near induced redistribution of charge carriers near the NV. We then build on these findings to demonstrate transverse-relaxation-time-weighted imaging of the superconductor film. These results shed light on the dynamics governing the spin coherence of shallow NVs, and promise opportunities for new forms of noise spectroscopy and imaging of superconductors.
High-temperature annealing is a promising but still mainly unexplored method for enhancing spin properties of negatively charged nitrogen-vacancy (NV) centers in diamond particles. After high-energy irradiation, the formation of NV centers in diamond particles is typically accomplished via annealing at temperatures in the range of 800–900 °C for 1–2 h to promote vacancy diffusion. Here, we investigate the effects of conventional annealing (900 °C for 2 h) against annealing at a much higher temperature of 1600 °C for the same annealing duration for particles ranging in size from 100 nm to 15 μm using electron paramagnetic resonance and optical characterization. At this high temperature, the vacancy-assisted diffusion of nitrogen can occur. Previously, the annealing of diamond particles at this temperature was performed over short time scales because of concerns of particle graphitization. Our results demonstrate that particles that survive this prolonged 1600 °C annealing show increased NV T1 and T2 electron spin relaxation times in 1 and 15 μm particles, due to the removal of fast relaxing spins. Additionally, this high-temperature annealing also boosts magnetically induced fluorescence contrast of NV centers for particle sizes ranging from 100 nm to 15 μm. At the same time, the content of NV centers is decreased fewfold and reaches a level of <0.5 ppm. The results provide guidance for future studies and the optimization of high-temperature annealing of fluorescent diamond particles for applications relying on the spin properties of NV centers in the host crystals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.