Hybrid components produced by two or more different process technologies grant the possibility to compensate the drawbacks of the used processes. The combination of additive manufacturing (AM) and forming offers geometrical freedom in extensions of geometrical simple parts in a cost-efficient way. Unlike the combination of bulk metal forming and AM, sheet metal forming and AM is less investigated. Especially for Ti-6Al-4V, which is widely used in AM but has a low formability at room temperature, research is still needed. In this study, the formability of hybrid parts made of Ti‑6Al‑V consisting of sheet material and additively manufactured elements (AME) is investigated for a hemispherical punch geometry. Thus, a designed tool for forming of hybrid parts at elevated temperatures is used. First investigations with a specially designed stretch forming tool demonstrate the distinct influence of the additively manufactured bodies on the stretch forming process of hybrid parts made of Ti‑6Al‑4V. Namely, the achievable drawing depth is reduced for hybrid parts as the functional elements are placed in the area of highest stresses, distorting material flow.
Subject of this work is the contact mechanical properties and flowability of polymer and metal powders when they are dispensed on the surface of a powder bed for use in laser-based powder bed fusion in additive manufacturing. Generating local part properties in metal as well as polymer-based powder bed fusion processes is of high interest, so an approach is made to locally add additives by a vibrational microfeeding system for metal and polymer powders. To realize a controlled powder discharge, the behavior of additives, which are dropped on a surface and on a powder bed is analyzed. Influencing factors for mass flow of the powders will be excitation frequency, excitation amplitude and capillary diameter on the side of experimental setup as well as particle size distribution and physical properties on the material side.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.