As photolithography is pushed to fabricate deep-sub wavelength devices for 90nm, 65nm and smaller technology nodes using available exposure tools (i.e., 248nm, 193nm steppers), photomask capability is becoming extremely critical. For example, PSM masks require more complicated processing; aggressive OPC makes the writing time longer and sometimes unpredictable; and, high MEEF imposes much more stringent demands on mask quality. Therefore, in order for any new lithography technology to be adopted into production, mask manufacturability must be studied thoroughly and carefully.In this paper we will present the mask manufacturability study on mask patterns created using Inverse Lithography Technology (ILT). Unlike conventional OPC methodologies, ILT uses a unique outcome-based technology to mathematically determine the mask features that produce the desired on-wafer results. ILT solves the most critical litho challenges of the deep sub-wavelength era. Potential benefits include: higher yield; expanded litho process windows; superb pattern fidelity at 90, 65 & 45-nm nodes; and reduced time-to-silicon -all without changing the existing lithography infrastructure and design-to-silicon flow.In this study a number of cell structures were selected and used as test patterns. "Luminized patterns" were generated for binary mask and attenuated phase-shift mask. Both conventional OPC patterns and "luminized patterns" were put on a test reticle side by side, and they all have a number of variations in term of correction aggressivity level and mask complexity. Mask manufacturability, including data fracturing, writing time, mask inspection, and metrology were studied. The results demonstrate that, by optimizing the inspection recipe, masks created using ILT technology can be made and qualified using current processes with a reasonable turn-around time.
Long write times have been an industry wide concern regarding rising mask costs. The purpose of this study is to develop a simple model that can predict mask write time precisely, without an e-beam writer. With a good understanding of the trade-offs between design complexity and write time, mask makers can work with mask designers more closely to simplify design and minimize mask cost. This work compared several basic models including calculations based on write area with a fixed e-beam shot size, a software estimation with a pre-set exposure, and a mask stage settling time. Our proposed model uses a completely different approach to examine the correlation between layout complexity (vertices count, total line edge, figure, etc.) through a CATS layout segmentation and actual write time. It is found that write time is a strong function of layout figure, vertex count and total line edge. Errors between actual write time and estimated write time from the new model reduced from 7% on average on the current production software to 3%. Additionally, the new model can operate independent of the writer type and without fractured data being transferred onto a writer. Also provided are a few case studies to evaluate the interaction between write time and basic shape/OPC (optical proximity correction). Using a simple design shape and a better data snapping strategy can reduce write time up to 10 fold for applications in nano-imprint template manufacturing. Several strategies to reduce mask cost are proposed.
It has been demonstrated that the write time for 50keV E-beam masks is a function of layout complexity including figure count, vertex count and total line edge. This study is aimed to improve model fitting by utilizing all the variables generated from CATS. A better correlation of R 2 = 0.99 was achieved by including quadratic and interaction terms. The vertex model was then applied to estimate write time of various nano-imprint templates. Accuracy of the vertex model is much better than the numbers generated from E-beam tool software. A 90nm test layout was treated with a mask optimization (MO) algorithm. A 26% write time reduction was observed through shot count reduction. The advanced features of the new generation E-beam writing tool combined with mask layout optimization, allows the same level of mask cost even though the capital cost of the new tool set increased 25%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.