Raman spectroscopy has historically played an important role in the structural characterization of graphitic materials, in particular providing valuable information about defects, stacking of the graphene layers and the finite sizes of the crystallites parallel and perpendicular to the hexagonal axis. Here we review the defect-induced Raman spectra of graphitic materials from both experimental and theoretical standpoints and we present recent Raman results on nanographites and graphenes. The disorder-induced D and D' Raman features, as well as the G'-band (the overtone of the D-band which is always observed in defect-free samples), are discussed in terms of the double-resonance (DR) Raman process, involving phonons within the interior of the 1st Brillouin zone of graphite and defects. In this review, experimental results for the D, D' and G' bands obtained with different laser lines, and in samples with different crystallite sizes and different types of defects are presented and discussed. We also present recent advances that made possible the development of Raman scattering as a tool for very accurate structural analysis of nano-graphite, with the establishment of an empirical formula for the in- and out-of-plane crystalline size and even fancier Raman-based information, such as for the atomic structure at graphite edges, and the identification of single versus multi-graphene layers. Once established, this knowledge provides a powerful machinery to understand newer forms of sp(2) carbon materials, such as the recently developed pitch-based graphitic foams. Results for the calculated Raman intensity of the disorder-induced D-band in graphitic materials as a function of both the excitation laser energy (E(laser)) and the in-plane size (L(a)) of nano-graphites are presented and compared with experimental results. The status of this research area is assessed, and opportunities for future work are identified.
All rig& reserved. This book or parts thereof. m y not be reproduced in any form or by any means, elecironic or mechanical, including photocopying, recording or any information storage and retrieval system ROW known or fo be invented, withmf writfen ~e~i s s i o n~o m the PublishmFor photocopying of material in this volume, please pay a copying fee
Raman spectroscopy is here shown to provide a powerful tool to differentiate between two different sp(2) carbon nanostructures (carbon nanotubes and graphene) which have many properties in common and others that differ. Emphasis is given to the richness of both carbon nanostructures as prototype examples of nanostructured materials. A glimpse toward future developments in this field is presented.
The electronic structure for graphene monolayer tubules is predicted as a function of the diameter and helicity of the constituent graphene tubules. The calculated results show that approximately 1/3 of these tubules are a one-dimensional metal which is stable against a Peierls distortion, and the other 2/3 are one-dimensional semiconductors. The implications of these results are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.