Application of high-throughput DNA sequencing has greatly accelerated human microbiome research and its translation into new therapeutic and diagnostics capabilities. Microbiome community analyses results can, however, vary considerably across studies or laboratories, and establishment of measurement standards to improve accuracy and reproducibility has become a priority.
Structurally-diversified bile acids (BAs) are involved in shaping of intestinal microbiota as well as absorption of dietary lipids. Taurocholic acid, a conjugated form of BA, has been reported to be a factor triggering germination of a wide range of spore-forming bacteria in intestine. To test a hypothesis that other BAs also promote germination of intestinal bacteria, we attempted culture of bacteria from ethanol-treated feces by using a series of BAs. It was found that conjugated-BAs, notably three glycine-conjugated BAs, glycodeoxycholic acid and glycochenodeoxycholic acid, significantly increased the number and the species variety of colonies formed on the agar plate. These colonized bacteria mostly belonged to class Clostridia, mainly consisting of families Lachnospiraceae, Clostridiaceae, and Peptostreptococcaceae. There were several types of bacteria associated with different sensitivity to each BA. Eventually, we isolated 72 bacterial species of which 61 are known and 11 novel. These results demonstrate that the culturable range of bacteria in intestine can be widened using the germination-inducing activity of BAs. This approach would advance the research on spore-forming Clostridia that contains important but difficult-to-cultured bacteria associate with host health and diseases.
Here, we aim to understand the condition of the gut microbiome of Filipino adults in relation to their diet and metabolic status. Compared to rural Albay (n = 67), the gut microbiome of subjects living in urban Manila (n = 25) was more colonized by the order Clostridiales, which was negatively correlated with host carbohydrate consumption. Principal component analysis using the genus composition of the 92 total subjects indicated four microbiome types: one type driven by Prevotella, which was associated with high rice consumption and mainly consisted of healthy Albay subjects, one Clostridiales-driven group containing a number of type 2 diabetes mellitus (T2D) subjects from both Manila and Albay who showed lower butyrate levels in association with a decrease in Mediterraneibacter faecis, and the other two types showing dysbiosis-like microbiomes with Lactobacillus and Bifidobacterium overgrowth, with a high ratio of T2D and obese subjects. Multivariate logistic regression analysis suggested high dietary energy intake, and two Veillonellaeae genera, Dialister and Megasphaera, as T2D risk factors, while Prevotella and M. faecis as anti-T2D factors. In conclusion, low-carbohydrate diets restructured the Prevotella-driven gut microbiome, which may predispose Filipino people with high energy diet to T2D.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.