Endogenous tissue inhibitors of metalloproteinases (TIMPs) have key roles in regulating physiological and pathological cellular processes. Imitating the inhibitory molecular mechanisms of TIMPs while increasing selectivity has been a challenging but desired approach for antibody-based therapy. TIMPs use hybrid protein-protein interactions to form an energetic bond with the catalytic metal ion, as well as with enzyme surface residues. We used an innovative immunization strategy that exploits aspects of molecular mimicry to produce inhibitory antibodies that show TIMP-like binding mechanisms toward the activated forms of gelatinases (matrix metalloproteinases 2 and 9). Specifically, we immunized mice with a synthetic molecule that mimics the conserved structure of the metalloenzyme catalytic zinc-histidine complex residing within the enzyme active site. This immunization procedure yielded selective function-blocking monoclonal antibodies directed against the catalytic zinc-protein complex and enzyme surface conformational epitopes of endogenous gelatinases. The therapeutic potential of these antibodies has been demonstrated with relevant mouse models of inflammatory bowel disease. Here we propose a general experimental strategy for generating inhibitory antibodies that effectively target the in vivo activity of dysregulated metalloproteinases by mimicking the mechanism employed by TIMPs.
We describe the design and function of a molecular logic system, by which a combinatorial recognition of the input signals is utilized to efficiently process chemically encoded information. Each chemical input can target simultaneously multiple domains on the same molecular platform, resulting in a unique combination of chemical states, each with its characteristic fluorescence output. Simple alteration of the input reagents changes the emitted logic pattern and enables it to perform different algebraic operations between two bits, solely in the fluorescence mode. This system exhibits parallelism in both its chemical inputs and light outputs.
We show reproducible, stable negative differential resistance (NDR) at room temperature in molecule-controlled, solvent-free devices, based on reversible changes in molecule-electrode interface properties. The active component is the cyclic disulfide end of a series of molecules adsorbed onto mercury. As this active component is reduced, the Hg-molecule contact is broken, and an insulating barrier at the molecule-electrode interface is formed. Therefore, the alignment of the molecular energy levels, relative to the Fermi levels of the electrodes, is changed. This effect results in a decrease in the current with voltage increase as the reduction process progresses, leading to the so-called NDR behavior. The effect is reproducible and repeatable over more than 50 scans without any reduction in the current. The stability of the system, which is in the "solid state" except for the Hg, is due to the molecular design where long alkyl chains keep the molecules aligned with respect to the Hg electrode, even when they are not bound to it any longer.
In the quest for fast throughput metal biosensors, it would be of interest to prepare fluorophoric ligands with surface-adhesive moieties. Biomimetic analogues to microbial siderophores possessing such ligands offer attractive model compounds and new opportunities to meet this challenge. The design, synthesis, and physicochemical characterization of biomimetic analogues of microbial siderophores from Paracoccus denitrificans and from the Vibrio genus are described. The (4S,5S)-2-(2-hydroxyphenyl)-5-methyl-4,5-dihydro-1,3-oxazole-4-carbonyl group (La), noted here as an HPO unit, was selected for its potential dual properties, serving as a selective iron(III) binder and simultaneously as a fluorophore. Three tripodal symmetric analogues cis-Lb, cis-Lc, and trans-Lc, which mainly differ in the length of the spacers between the central carbon anchor and the ligating sites, were synthesized. These ferric-carriers were built from a tetrahedral carbon as an anchor, symmetrically extended by three converging iron-binding chains, each bearing a terminal HPO. The fourth chain could contain a surface-adhesive function (Lc). A combination of absorption and emission spectrophotometry, potentiometry, electrospray mass spectrometry, and electrochemistry was used to fully characterize the corresponding ferric complexes and to determine their stability. The quenching mechanism is consistent with an intramolecular static process and is more efficient for the analogue with longer arms. Detection limits in the low nanogram per milliliter range, comparable with the best chemosensors based on natural peptide siderophores, have been determined. These results clearly demonstrate that these tris(phenol-oxazoline) ligands in a tripodal arrangement firmly bind iron(III). Due to their fluorescent properties, the coordination event can be easily monitored, while the fourth arm is available for surface-adhesive moieties. The tripodal system is therefore an ideal candidate for integration with solid-state materials for the development of chip-based devices and analytical methodologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.