Staphylococcus aureus is considered to be an extracellular pathogen. However, survival of S. aureus within host cells may provide a reservoir relatively protected from antibiotics, thus enabling long-term colonization of the host and explaining clinical failures and relapses after antibiotic therapy. Here we confirm that intracellular reservoirs of S. aureus in mice comprise a virulent subset of bacteria that can establish infection even in the presence of vancomycin, and we introduce a novel therapeutic that effectively kills intracellular S. aureus. This antibody-antibiotic conjugate consists of an anti-S. aureus antibody conjugated to a highly efficacious antibiotic that is activated only after it is released in the proteolytic environment of the phagolysosome. The antibody-antibiotic conjugate is superior to vancomycin for treatment of bacteraemia and provides direct evidence that intracellular S. aureus represents an important component of invasive infections.
Background:The effect of HDAC inhibitor kinetic properties on biological function is currently unknown.
Results:The kinetic rate constants of HDAC inhibitors differentially affect histone acetylation, cell viability, and gene expression. Conclusion: Evaluating HDAC inhibitor properties using histone acetylation is not predictive of their function on cellular activity. Significance: Characterizing the biological effect of different HDAC inhibitors will help to evaluate their clinical utility.
Recent advances enabling the cloning of human immunoglobulin G genes have proven effective for discovering monoclonal antibodies with therapeutic potential. However, these antibody-discovery methods are often arduous and identify only a few candidates from numerous antibody-secreting plasma cells or plasmablasts. We describe an in vivo enrichment technique that identifies broadly neutralizing human antibodies with high frequency. For this technique, human peripheral blood mononuclear cells from vaccinated donors are activated and enriched in an antigen-specific manner for the production of numerous antigen-specific plasmablasts. Using this technology, we identified four broadly neutralizing influenza A antibodies by screening only 840 human antibodies. Two of these antibodies neutralize every influenza A human isolate tested and perform better than the current anti-influenza A therapeutic, oseltamivir, in treating severe influenza infection in mice and ferrets. Furthermore, these antibodies elicit robust in vivo synergism when combined with oseltamivir, thus highlighting treatment strategies that could benefit influenza-infected patients.
The transcriptional enhanced associate domain (TEAD) family of transcription factors serves as the receptors for the downstream effectors of the Hippo pathway, YAP and TAZ, to upregulate the expression of multiple genes involved in cellular proliferation and survival. Recent work identified TEAD S-palmitoylation as critical for protein stability and activity as the lipid tail extends into a hydrophobic core of the protein. Here, we report the identification and characterization of a potent small molecule that binds the TEAD lipid pocket (LP) and disrupts TEAD S-palmitoylation. Using a variety of biochemical, structural, and cellular methods, we uncover that TEAD S-palmitoylation functions as a TEAD homeostatic protein level checkpoint and that dysregulation of this lipidation affects TEAD transcriptional activity in a dominant-negative manner. Furthermore, we demonstrate that targeting the TEAD LP is a promising therapeutic strategy for modulating the Hippo pathway, showing tumor stasis in a mouse xenograft model.
Influenza B virus (IBV) causes annual influenza epidemics around the world. Here we use an in vivo plasmablast enrichment technique to isolate a human monoclonal antibody, 46B8 that neutralizes all IBVs tested in vitro and protects mice against lethal challenge of all IBVs tested when administered 72 h post infection. 46B8 demonstrates a superior therapeutic benefit over Tamiflu and has an additive antiviral effect in combination with Tamiflu. 46B8 binds to a conserved epitope in the vestigial esterase domain of hemagglutinin (HA) and blocks HA-mediated membrane fusion. After passage of the B/Brisbane/60/2008 virus in the presence of 46B8, we isolated three resistant clones, all harbouring the same mutation (Ser301Phe) in HA that abolishes 46B8 binding to HA at low pH. Interestingly, 46B8 is still able to protect mice against lethal challenge of the mutant viruses, possibly owing to its ability to mediate antibody-dependent cellular cytotoxicity (ADCC).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.