Carbothermal reduction of manganese oxides was studied in hydrogen, helium, and argon at different temperatures and carbon-to-manganese oxide ratios. Isothermal and temperature programmed carbothermal reduction experiments were conducted in a fixed bed reactor in a vertical tube furnace, with on-line monitoring of gas composition by the CO-CO 2 infrared sensor. The extent of reduction was calculated using the off-gas composition and LECO oxygen contents in the reduced samples. In all gas atmospheres, the reaction rate increased with temperature. The reduction rate of manganese oxide in hydrogen was higher than in helium, and in helium higher than in argon. This was attributed to the involvement of hydrogen in the reduction process and the difference in CO and CO 2 diffusion coefficients in helium and argon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.