The tremendous development in wireless technologies and multimedia applications persuaded upsurge in spectrum utilization in the past. One of the adequate clarifications to overwhelm this limitation is by using Cognitive Radios (CR). These networks are likely to boost spectrum consumption professionally by permitting Secondary Users (SUs) to take advantage of the use of the approved spectrum of primary users (PUs). CR is a kind of a sensible radio that can sense the extraneous surroundings, analyze the past and build perspicacious conclusions to switch its transmission factors in step with the current state of the atmosphere. An Ad-hoc
Network engaging Cognitive Radios (CR) can often be termed as Cognitive Radio Adhoc Network (CRAHN). Routing in CRAHNis not an easy mission due to spectrum availability, power, link stability, etc. Among all the parameters, the one among the best parameter for route selection is throughput. Since several applications need a high value of throughput like Audio & Video Broadcasting, Interactive audio & Video Streaming, etc. and some require the low value of throughput like E-mail, Telnet, etc. This paper design a routing strategy based on finding an optimal throughput path using fuzzy logic. To show the efficiency of a designed scheme it is compared with the shortest path routing mechanism. Our result shows that the proposed method is efficient than Shortest Spectrum.
The requirement of high data rate information transmission is rising exponentially for supporting different services including social networking, web streaming, and biomedical sensor data transmission. Such services required high channel bandwidth with secure information transmission and immunity to electromagnetic interference. Radio over free space optics (RoFSO) is witnessed as a promising technological solution to provide high data rate transmission over free space channel. We report on the design of a 2×10 Gb/s-10 GHz RoFSO transmission system using the mode division multiplexing technique and evaluate its transmission performance over varying levels of dust weather conditions. The comparison of non-return to zero (NRZ) and return to zero (RZ) binary digital optical modulation techniques is carried out in the proposed system. It is found that the proposed system using NRZ modulation serves 14.5 km transmission range; however, in the case of RZ modulation, it was restricted to 10 km for a target bit error rate (BER) of 10−6, thus resulting in a noticeable link enhancement of 4.5 km. Also, we demonstrate NRZ-based MDM-RoFSO link performance and availability in dust weather conditions using the BER, maximum reachable link range, and eye diagram as key performance parameters. We obtain a reliable transmission of 20 Gb/s-20 GHz data through HG00 and HG01 channels over a link range of 2500–108 m depending on the external dust weather condition. Furthermore, since this investigation shows the feasibility of RoFSO for small size cells, which is an essential feature of 5G mobile network, the proposed system can thus be implemented as a backhaul/fronthaul link for high-band (above 6 GHz) 5G services and for providing secure transmission of biomedical sensor data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.