We consider non-differentiable dynamic optimization problems such as those arising in robotics and subspace tracking. Given the computational constraints and the time-varying nature of the problem, a low-complexity algorithm is desirable, while the accuracy of the solution may only increase slowly over time. We put forth the proximal online gradient descent (OGD) algorithm for tracking the optimum of a composite objective function comprising of a differentiable loss function and a non-differentiable regularizer. An online learning framework is considered and the gradient of the loss function is allowed to be erroneous. Both, the gradient error as well as the dynamics of the function optimum or target are adversarial and the performance of the inexact proximal OGD is characterized in terms of its dynamic regret, expressed in terms of the cumulative error and path length of the target. The proposed inexact proximal OGD is generalized for application to large-scale problems where the loss function has a finite sum structure. In such cases, evaluation of the full gradient may not be viable and a variance reduced version is proposed that allows the component functions to be sub-sampled. The efficacy of the proposed algorithms is tested on the problem of formation control in robotics and on the dynamic foreground-background separation problem in video.
This paper considers the problem of understanding the exit time for trajectories of gradient-related first-order methods from saddle neighborhoods under some initial boundary conditions. Given the 'flat' geometry around saddle points, first-order methods can struggle in escaping these regions in a fast manner due to the small magnitudes of gradients encountered. In particular, while it is known that gradient-related first-order methods escape strict-saddle neighborhoods, existing literature does not explicitly leverage the local geometry around saddle points in order to control behavior of gradient trajectories. It is in this context that this paper puts forth a rigorous geometric analysis of the gradient-descent method around strict-saddle neighborhoods using matrix perturbation theory. In doing so, it provides a key result that can be used to generate an approximate gradient trajectory for any given initial conditions. In addition, the analysis leads to a linear exit-time solution for gradient-descent method under certain necessary initial conditions for a class of strict-saddle functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.