Transdermal drug delivery systems (TDDS), also known as patches, are dosage forms designed to deliver a therapeutically effective amount of drug across a patients skin. In order to deliver therapeutic agents through the human skin for systemic effects, the comprehensive morphological, biophysical and physicochemical properties of the skin are to be considered. Transdermal delivery provides a leading edge over injectables and oral routes by increasing patient compliance and avoiding first pass metabolism respectively. Transdermal delivery not only provides controlled, constant administration of the drug, but also allows continuous input of drugs with short biological half-lives and eliminates pulsed entry into systemic circulation, which often causes undesirable side effects. The TDDS review articles provide valuable information regarding the transdermal drug delivery systems and its evaluation process details as a ready reference for the research scientist who is involved in TDDS. With the advancement in technology Pharma industries have trendified all its resources. Earlier we use convectional dosage form but now we use novel drug delivery system. One of greatest innovation of novel drug delivery is transdermal patch. The advantage of transdermal drug delivery system is that it is painless technique of administration of drugs.
Transdermal drug delivery system was introduced to overcome the difficulties of drug delivery through oral route. Despite their relatively higher costs, transdermal delivery systems have proved advantageous for delivery of selected drugs, such as estrogens, testosterone, clonidine and nitro-glycerine. Transdermal delivery provides a leading edge over injectable and oral routes by increasing patient compliance and avoiding first pass metabolism respectively. Topical administration of therapeutic agents offers many advantages over conventional oral and invasive methods of drug delivery. Skin is an effective medium from which absorption of the drug takes place and enters into systematic circulation over a period of time. The present article reviews the selection of drug candidates and polymers suitable to be formulated as transdermal system, advantages, disadvantages of formulation design and the methods of evaluation.
In a transdermal drug delivery system the drug is applied in a relatively high dosage to the inside of a patch, which is worn on the skin for an extended period of time. Through a diffusion process, the drug enters the bloodstream directly through the skin. Since there is high concentration on the patch and low concentration in the blood, the drug will keep diffusing into the blood for a long period of time, maintaining the constant concentration of drug in the blood flow. Transdermal drug delivery system was introduced to overcome the difficulties of drug delivery through oral route. The conventional oral dosage forms have significant setbacks of poor bioavailability due to hepatic first pass metabolism. To improve characters of transdermal drug delivery system (TDDS) was emerged, which will improve the therapeutic efficacy and safety of drugs by specific sites within the body, thereby reducing both the size and number of doses. This review article describes the methods of preparation of different types of transdermal patches such as matrix patches, reservoir type, membrane matrix, drug-in-adhesive patches and micro reservoir patches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.