In this paper, we present an experimental and simulation based study to evaluate the use of full-duplex as a mode in practical IEEE 802.11 networks. To enable the study, we designed a 20 MHz multi-antenna OFDM full-duplex physical layer and a full-duplex capable MAC protocol which is backward compatible with current 802.11. Our extensive over-the-air experiments, simulations and analysis demonstrate the following two results.First, the use of multiple antennas at the physical layer leads to a higher ergodic throughput than its hardwareequivalent multi-antenna half-duplex counterparts, for SNRs above the median SNR encountered in practical WiFi deployments. Second, the proposed MAC translates the physical layer rate gain into near doubling of throughput for multi-node single-AP networks. The two combined results allow us to conclude that there are potentially significant benefits gained from including a full-duplex mode in future WiFi standards.
Existing video streaming algorithms use various estimation approaches to infer the inherently variable bandwidth in cellular networks, which often leads to reduced quality of experience (QoE). We ask the question: "If accurate bandwidth prediction were possible in a cellular network, how much can we improve video QoE?". Assuming we know the bandwidth for the entire video session, we show that existing streaming algorithms only achieve between 69%-86% of optimal quality. Since such knowledge may be impractical, we study algorithms that know the available bandwidth for a few seconds into the future. We observe that prediction alone is not sufficient and can in fact lead to degraded QoE. However, when combined with rate stabilization functions, prediction outperforms existing algorithms and reduces the gap with optimal to 4%. Our results lead us to believe that cellular operators and content providers can tremendously improve video QoE by predicting available bandwidth and sharing it through APIs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.