Sediments from Lunkaransar dry lake in northwestern India reveal regional water table and lake level fluctuations over decades to centuries during the Holocene that are attributed to changes in the southwestern Indian monsoon rains. The lake levels were very shallow and fluctuated often in the early Holocene and then rose abruptly around 6300 carbon-14 years before the present (14C yr B.P.). The lake completely desiccated around 4800 (14)C yr B.P. The end of this 1500-year wet period coincided with a period of intense dune destabilization. The major Harrapan-Indus civilization began and flourished in this region 1000 years after desiccation of the lake during arid climate and was not synchronous with the lacustral phase.
Grain size analyses of three hilltop, primary eolian loess sequences in the Negev desert, southern Israel, show a bimodal grain-size distribution at 50–60 μm and 3–8 μm. Using analyses of mineralogy and OSL ages we demonstrate that the coarse mode is composed mostly of quartz grains and its relative magnitude increases regionally with time, suggesting an enhancement of a time-transgressive proximal dust source compared to a distal, Saharan fine-grain dust. The only proximal dust source for large amount of coarse silt quartz grains is the sands that advanced into Sinai and the Negev concurrently with the loess accretion during the late Pleistocene as a result of the exposure of the Mediterranean shelf. We therefore propose that the coarse silt quartz grains were formed through eolian abrasion within the margins of an advancing sand sea. This relationship between desert sand seas as a source for proximal coarse dust and desert margin loess deposits can be applicable to other worldwide deserts such as Northern Africa, China and Australia.
All exposed rocks on Earth's surface experience erosion; the fastest rates are documented in rapidly uplifted monsoonal mountain ranges, and the slowest occur in extreme cold or warm deserts-millennial submeterscale erosion may be approached only in the latter. The oldest previously reported exposure ages are from boulders and clasts of resistant lithologies lying at the surface, and the slowest reported erosion rates are derived from bedrock outcrops or boulders that erode more slowly than their surroundings; thus, these oldest reported ages and slowest erosion rates relate to outstanding features in the landscape, while the surrounding landscape may erode faster and be younger. We present erosion rate and exposure age data from the Paran Plains, a typical environment in the Near East where vast abandoned alluvial sur-faces (10 2 -10 4 km 2 ) are covered by well-developed desert pavements. These surfaces may experience erosion rates that are slower than those documented elsewhere on our planet and can retain their original geometry for more than 2 m.y. Major factors that reduce erosion converge in these regions: extreme hyperaridity, tectonic stability, fl at and horizontal surfaces (i.e., no relief), and effective surface armoring by a clast mosaic of highly resistant lithology. The 10 Be concentrations in amalgamated desert pavement chert clasts collected from abandoned alluvial surfaces in the southern Negev, Israel (representing the Sahara-Arabia Deserts), indicate simple exposure ages of 1.5-1.8 Ma or correspond to maximum erosion rates of 0.25-0.3 m m.y. -1 . The 36 Cl in carbonate clasts, from the same pavement, weathers faster than the chert and yields simple exposure ages of 430-490 ka or maximum erosion rates of 0.7-0.8 m m.y. -1 . These ages and rates are exceptional because they represent an extensive landform. The 10 Be concentrations from samples collected at depth and optically stimulated luminescence (OSL) dating reveal a two-stage colluvial deposition history followed by eolian addition of 40 cm of silt during the past 170 k.y. Our results highlight the effi ciency of desert pavement armor in protecting rocks from erosion and preserving such geomorphic surfaces for millions of years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.