In Wisconsin, vegetable crops are threatened annually by the aster yellows phytoplasma (AYp), which is obligately transmitted by the aster leafhopper. Using a multiyear, multilocation data set, seasonal patterns of leafhopper abundance and infectivity were modeled. A seasonal aster yellows index (AYI) was deduced from the model abundance and infectivity predictions to represent the expected seasonal risk of pathogen transmission by infectious aster leafhoppers. The primary goal of this study was to identify periods of time during the growing season when crop protection practices could be targeted to reduce the risk of AYp spread. Based on abundance and infectivity, the annual exposure of the carrot crop to infectious leafhoppers varied by 16- and 70-fold, respectively. Together, this corresponded to an estimated 1,000-fold difference in exposure to infectious leafhoppers. Within a season, exposure of the crop to infectious aster leafhoppers (Macrosteles quadrilineatus Forbes), varied threefold because of abundance and ninefold because of infectivity. Periods of above average aster leafhopper abundance occurred between 11 June and 2 August and above average infectivity occurred between 27 May and 13 July. A more comprehensive description of the temporal trends of aster leafhopper abundance and infectivity provides new information defining when the aster leafhopper moves into susceptible crop fields and when they transmit the pathogen to susceptible crops.
In Wisconsin, vegetable crops are threatened annually by infection of the aster yellows phytoplasma (AYp), the causal agent of aster yellows (AY) disease, vectored by the aster leafhopper, Macrosteles quadrilineatus Forbes. Aster leafhopper abundance and infectivity are influenced by processes operating across different temporal and spatial scales. We applied a multilevel modeling approach to partition variance in multifield, multiyear, pest scouting data sets containing temporal and spatial covariates associated with aster leafhopper abundance and infectivity. Our intent was to evaluate the relative importance of temporal and spatial covariates to infer the relevant scale at which ecological processes are driving AY epidemics and identify periods of elevated risk for AYp spread. The relative amount of aster leafhopper variability among and within years (39%) exceeded estimates of variation among farm locations and fields (7%). Similarly, time covariates explained the largest amount of variation of aster leafhopper infectivity (50%). Leafhopper abundance has been decreasing since 2001 and reached its minimum in 2010. The average seasonal pattern indicated that periods of above average abundance occurred between 11 June and 1 August. Annual infectivity appears to oscillate around an average value of 2% and seasonal periods of above average infectivity occur between 19 May and 15 July. The coincidence of the expected periods of high leafhopper abundance and infectivity increases our knowledge of when the insect moves into susceptible crop fields and when it spreads the pathogen to susceptible crops, representing a seasonal interval during which management of the insect can be focused.
The Dutch agricultural sector is facing major challenges, which can affect the entrepreneurial farming activities. One of the major challenges is the adoption of practices leading to sustainable agriculture. Therefore, it is relevant to investigate the knowledge of the main actors in agriculture: the farmers. In this project, the way farmers structure their knowledge is studied. The study was completed through filling questionnaires by interviewing them. It was revealed that farmers possess knowledge of their own about their enterprise, but they also receive knowledge from external sources. Through this organized survey, we identified the concepts that farmers associate with sustainable agriculture. However, it is not clear whether the famers' knowledge is sufficient and suitable to adopt sustainable practices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.