Purpose: A method for enumerating circulating tumor cells (CTC) has received regulatory clearance. The primary objective of this prospective study was to establish the relationship between posttreatment CTC count and overall survival (OS) in castration-resistant prostate cancer (CRPC). Secondary objectives included determining the prognostic utility of CTC measurement before initiating therapy, and the relationship of CTC to prostate-specific antigen (PSA) changes and OS at these and other time points. Experimental Design: Blood was drawn from CRPC patients with progressive disease starting a new line of chemotherapy before treatment and monthly thereafter. Patients were stratified into predetermined Favorable or Unfavorable groups (<5 and z5 CTC/7.5mL). Results: Two hundred thirty-one of 276 enrolled patients (84%) were evaluable. Patients with Unfavorable pretreatment CTC (57%) had shorter OS (median OS, 11.5 versus 21.7 months; Cox hazard ratio, 3.3; P < 0.0001). Unfavorable posttreatment CTC counts also predicted shorter OS at 2 to 5, 6 to 8, 9 to 12, and 13 to 20 weeks (median OS, 6.7-9.5 versus 19.6-20.7 months;Cox hazard ratio, 3.6-6.5; P < 0.0001). CTC counts predicted OS better than PSA decrement algorithms at all time points; area under the receiver operator curve for CTC was 81% to 87% and 58% to 68% for 30% PSA reduction (P = 0.0218). Prognosis for patients with (a) Unfavorable baseline CTC who converted to Favorable CTC improved (6.8 to 21.3 months); (b) Favorable baseline CTC who converted to Unfavorable worsened (>26 to 9.3 months). Conclusions: CTC are the most accurate and independent predictor of OS in CRPC. These data led to Food and Drug Administration clearance of this assay for the evaluation of CRPC.
Heterogeneity in the genomic landscape of metastatic prostate cancer has become apparent through several comprehensive profiling efforts, but little is known about the impact of this heterogeneity on clinical outcome. Here, we report comprehensive genomic and transcriptomic analysis of 429 patients with metastatic castration-resistant prostate cancer (mCRPC) linked with longitudinal clinical outcomes, integrating findings from whole-exome, transcriptome, and histologic analysis. For 128 patients treated with a first-line next-generation androgen receptor signaling inhibitor (ARSI; abiraterone or enzalutamide), we examined the association of 18 recurrent DNA- and RNA-based genomic alterations, including androgen receptor (AR) variant expression, AR transcriptional output, and neuroendocrine expression signatures, with clinical outcomes. Of these, only RB1 alteration was significantly associated with poor survival, whereas alterations in RB1, AR, and TP53 were associated with shorter time on treatment with an ARSI. This large analysis integrating mCRPC genomics with histology and clinical outcomes identifies RB1 genomic alteration as a potent predictor of poor outcome, and is a community resource for further interrogation of clinical and molecular associations.
Therapy for advanced prostate cancer centers on suppressing systemic androgens and blocking activation of the androgen receptor (AR). Despite anorchid serum androgen levels, nearly all patients develop castration-resistant disease. We hypothesized that ongoing steroidogenesis within prostate tumors and the maintenance of intratumoral androgens may contribute to castration-resistant growth. Using mass spectrometry and quantitative reverse transcription-PCR, we evaluated androgen levels and transcripts encoding steroidogenic enzymes in benign prostate tissue, untreated primary prostate cancer, metastases from patients with castration-resistant prostate cancer, and xenografts derived from castration-resistant metastases. Testosterone levels within metastases from anorchid men [0.74 ng/g; 95% confidence interval (95% CI), 0.59-0.89] were significantly higher than levels within primary prostate cancers from untreated eugonadal men (0.23 ng/g; 95% CI, 0.03-0.44; P < 0.0001). Compared with primary prostate tumors, castration-resistant metastases displayed alterations in genes encoding steroidogenic enzymes, including up-regulated expression of FASN, CYP17A1, HSD3B1, HSD17B3, CYP19A1, and UGT2B17 and down-regulated expression of SRD5A2 (P < 0.001 for all). Prostate cancer xenografts derived from castration-resistant tumors maintained similar intratumoral androgen levels when passaged in castrate compared with eugonadal animals. Metastatic prostate cancers from anorchid men express transcripts encoding androgen-synthesizing enzymes and maintain intratumoral androgens at concentrations capable of activating AR target genes and maintaining tumor cell survival. We conclude that intracrine steroidogenesis may permit tumors to circumvent low levels of circulating androgens. Maximal therapeutic efficacy in the treatment of castration-resistant prostate cancer will require novel agents capable of inhibiting intracrine steroidogenic pathways within the prostate tumor microenvironment. [Cancer Res 2008;68(11):4447-54]
Purpose Abiraterone is a potent inhibitor of the steroidogenic enzyme CYP17A1 and suppresses tumor growth in patients with castration-resistant prostate cancer (CRPC). The effectiveness of abiraterone in reducing tumor androgens is not known, nor have mechanisms contributing to abiraterone resistance been established. Experimental Design We treated human CRPC xenografts with abiraterone and measured tumor growth, tissue androgens, androgen receptor (AR) levels, and steroidogenic gene expression vs. controls. Results Abiraterone suppressed serum PSA levels and improved survival in two distinct CRPC xenografts: median survival of LuCaP35CR improved from 17 to 39 days (HR 3.6, p=0.0014) and LuCaP23CR from 14 to 24 days (HR 2.5, p=0.0048). Abiraterone strongly suppressed tumor androgens, with testosterone (T) decreasing from 0.49 ± 0.22 to 0.03 ± 0.01 pg/mg (p<0.0001), and from 0.69 ± 0.36 to 0.03 ± 0.01 pg/mg (p=0.002) in abiraterone-treated 23CR and 35CR, respectively, with comparable decreases in tissue DHT. Treatment was associated with increased expression of full length AR (ARFL) and truncated AR variants (ARFL 2.3 fold, p=0.008 and ARdel567es 2.7 fold, p=0.036 in 23CR; ARFL 3.4 fold, p=0.001 and ARV7 3.1 fold, p=0.0003 in 35CR), and increased expression of the abiraterone target CYP17A1 (~2.1 fold, p=0.0001 and p=0.028 in 23CR and 35CR, respectively) and transcript changes in other enzymes modulating steroid metabolism. Conclusions These studies indicate that abiraterone reduces CRPC growth via suppression of intratumoral androgens and that resistance to abiraterone may occur through mechanisms that include upregulation of CYP17A1, and/or induction of AR and AR splice variants that confer ligand-independent AR transactivation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.