We analyze the Euler discretization to a class of linear-quadratic optimal control problems. First we show convergence of order h for the optimal values of the objective function, where h is the mesh size. Under the additional assumption that the optimal control has bang-bang structure we show that the discrete and the continuous controls coincide except on a set of measure O( √ h). Under a slightly stronger assumption on the smoothness of the coefficients of the system equation we obtain an error estimate of order O(h).
We analyse the Euler discretization to a class of linear optimal control problems. First we show convergence of order h for the discrete approximation of the adjoint solution and the switching function, where h is the mesh size. Under the additional assumption that the optimal control has bang-bang structure we show that the discrete and the exact controls coincide except on a set of measure O(h). As a consequence, the discrete optimal control approximates the optimal control with order 1 w.r.t. the L 1 -norm and with order 1/2 w.r.t. the L 2 -norm. An essential assumption is that the slopes of the switching function at its zeros are bounded away from zero which is in fact an inverse stability condition for these zeros. We also discuss higher order approximation methods based on the approximation of the adjoint solution and the switching function.Several numerical examples underline the results.
A computational method for the approximation of reachable sets for non-linear dynamic systems is suggested. The method is based on a discretization of the interesting region and a projection onto grid points. The projections require to solve optimal control problems which are solved by a direct discretization approach. These optimal control problems allow a flexible formulation and it is possible to add non-linear state and/or control constraints and boundary conditions to the dynamic system. Numerical results for non-convex reachable sets are presented. Possible applications include robust optimal control problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.