We demonstrate an all-fiber supercontinuum source that generates a continuous spectrum from 1.6 μm to >11 μm with 417 mW on-time average power at 33% duty cycle. By utilizing a master oscillator power amplifier pump with three amplification stages and concatenating solid core ZBLAN, arsenic sulfide, and arsenic selenide fibers, we shift 1550 nm light to ∼4.5 μm, ∼6.5 μm, and >11 μm, respectively. With 69 mW past 7.5 μm, this source provides both high power and broad spectral expansion, while outputting a single fundamental mode.
Here, we report on the development of an antiresonant graphene-based one-dimensional structure which allows the control of linear and nonlinear device performance through optical confinement. A record average output in excess of 10 W is achieved by integrating this antiresonant graphene saturable absorber mirror into a vertical-external-cavity-surface-emitting-laser at 1030 nm, which leads to strong evidence of mode-locking, generating pulses with energies up to 2.8 nJ and a pulsewidth of 353 fs.
We report on the development and the demonstration of tunable high-power high-brightness linearly polarized vertical-external-cavity surface-emitting lasers (VECSELs). A V-shaped cavity, in which the antireflection-coated VECSEL chip (active mirror) is located at the fold, and a birefringent filter are employed to achieve a large wavelength tuning range. Multiwatt cw linearly polarized TEM00 output with a 20nm tuning range and narrow linewidth is demonstrated at room temperature.
Nonlinear optical properties of a graphene-polyvinyl alcohol composite are studied using an irradiance-scan setup. The measurements are carried out at 785 nm and 1064 nm in the nanosecond and picoseconds temporal regimes, respectively. It is shown that the output fluence readily clamps with increasing input and graphene concentration due to nonlinear absorption and scattering. Furthermore, the nonlinear transmission demonstrates weak saturable absorption followed by strong optical limiting. The nonlinear coefficients βeff and Isat calculated via numerical fitting show that βeff depends on the graphene content and increases significantly in nanosecond regime due to high degree of thermally induced nonlinear scattering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.