We developed an approach for focused gallium-ion beam scanning electron microscopy with energy filtered detection of backscattered electrons to create near isometric voxels for high-resolution whole cell visualization. Specifically, this method allowed us to create three-dimensional volumes of high-pressure frozen, freeze-substituted Saccharomyces cerevisiae yeast cells with pixel resolutions down to 3 nm/pixel in x, y, and z, supported by both empirical data and Monte Carlo simulations. As a result, we were able to segment and quantify data sets of numerous targeted subcellular structures/organelles at high-resolution, including the volume, volume percentage, and surface area of the endoplasmic reticulum, cell wall, vacuoles, and mitochondria from an entire cell. Sites of mitochondrial and endoplasmic reticulum interconnectivity were readily identified in rendered data sets. The ability to visualize, segment, and quantify entire eukaryotic cells at high-resolution (potentially sub-5 nanometers isotropic voxels) will provide new perspectives and insights of the inner workings of cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.