This paper describes ZEUS-MP, a multi-physics, massively parallel, message-passing implementation of the ZEUS code. ZEUS-MP differs significantly from the thoroughly documented ZEUS-2D code, the completely undocumented (in peer-reviewed literature) ZEUS-3D code, and a marginally documented "version 1" of ZEUS-MP first distributed publicly in 1999. ZEUS-MP offers an MHD algorithm which is better suited for multidimensional flows than the ZEUS-2D module by virtue of modifications to the Method of Characteristics scheme first suggested by Hawley & Stone (1995). This MHD module is shown to compare quite favorably to the TVD scheme described by Ryu et al. (1998). ZEUS-MP is the first publicly-available ZEUS code to allow the advection of multiple chemical (or nuclear) species. Radiation hydrodynamic simulations are enabled via an implicit flux-limited radiation diffusion (FLD) module. The hydrodynamic, MHD, and FLD modules may be used, singly or in concert, in one, two, or three space dimensions. Additionally, so-called "1.5-D" and "2.5-D" grids, in which the "half-D" denotes a symmetry axis along which a constant but non-zero value of velocity or magnetic field is evolved, are supported. Self gravity may be included either through the assumption of a GM/r potential or a solution of Poisson's equation using one of three linear solver packages (conjugategradient, multigrid, and FFT) provided for that purpose. Point-mass potentials are also supported.Because ZEUS-MP is designed for large simulations on parallel computing platforms, considerable attention is paid to the parallel performance characteristics of each module in the code. Strong-scaling tests involving pure hydrodynamics (with and without self-gravity), MHD, and RHD are performed in which large problems (256 3 zones) are distributed among as many as 1024 processors of an IBM SP3. Parallel efficiency is a strong function of the amount of communication required between processors in a given algorithm, but all modules are shown to scale well on up to 1024 processors for the chosen fixed problem size.
Using electrophysiological measures, the authors studied changes in prestimulus state, stimulus identification, and response-related processing when, in a go/no-go task, forced choice between 2 overt go responses was inserted. The authors observed decreased prestimulus motor preparation (electromyogram), no change in stimulus identification time (selection negativity), a minor increase in response selection time (lateralized readiness potential), a large increase in response preparation time (lateralized readiness potential), a minor effect on response execution time (electromyogram), and a decrease in the activation of a response-inhibition process on no-go trials (frontal event-related potential). The existence of the response-inhibition process was verified by the presence of inverted lateralized readiness potentials on no-go trials. Pure insertion of response choice in a task seems impossible because the choice between activation and inhibition (go/no-go) always seems already present.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.