This paper assesses the impacts of the global fi nancial and economic crisis on the agro-food sector of Central and Eastern European, Caucasus and Central Asian countries on the basis of research conducted in Hungary, Ukraine, Armenia and Kyrgyzstan. The objective of the study was to propose policy options to the Food and Agriculture Organisation of the United Nations and other public authorities which can be applied to lessen the undesirable effects of the current or future crises in the sector. Results of interviews of stakeholders were analysed in the context of primary economic data and sixteen policy recommendations were formulated.
Microwave-induced corneal endothelial damage was reported to have a low threshold (2.6 W/kg), and vasoactive ophthalmologic medications lowered the threshold by a factor of 10-0.26 W/kg. In an attempt to confirm these observations, four adult male Rhesus monkeys (Macaca mulatta) under propofol anesthesia were exposed to pulsed microwaves in the far field of a 2.8 GHz signal (1.43 +/- 0.06 micros pulse width, 34 Hz pulse repetition frequency, 13.0 mW/cm(2) spatial and temporal average, and 464 W/cm(2) spatial and temporal peak (291 W/cm(2) square wave equivalent) power densities). Corneal-specific absorption rate was 5.07 W/kg (0.39 W/kg/mW/cm(2)). The exposure resulted in a 1.0-1.2 degrees C increase in eyelid temperature. In Experiment I, exposures were 4 h/day, 3 days/week for 3 weeks (nine exposures and 36 h total). In Experiment II, these subjects were pretreated with 0.5% Timolol maleate and 0.005% Xalatan(R) followed by 3 or 7 4-h pulsed microwave exposures. Under ketamine-xylazine anesthesia, a non-contact specular microscope was used to obtain corneal endothelium images, corneal endothelial cell density, and pachymetry at the center and four peripheral areas of the cornea. Ophthalmologic measurements were done before and 7, 30, 90, and 180 days after exposures. Pulsed microwave exposure did not cause alterations in corneal endothelial cell density and corneal thickness with or without ophthalmologic drugs. Therefore, previously reported changes in the cornea exposed to pulsed microwaves were not confirmed at exposure levels that are more than an order of magnitude higher.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.