Abstract.To assess the history of greenhouse gas emissions and individual countries' contributions to emissions and climate change, detailed historical data are needed. We combine several published datasets to create a comprehensive set of emissions pathways for each country and Kyoto gas, covering the years 1850 to 2014 with yearly values, for all UNFCCC member states and most non-UNFCCC territories. The sectoral resolution is that of the main IPCC 1996 categories. Additional time series of CO 2 are available for energy and industry subsectors. Country-resolved data are combined from different sources and supplemented using year-to-year growth rates from regionally resolved sources and numerical extrapolations to complete the dataset. Regional deforestation emissions are downscaled to country level using estimates of the deforested area obtained from potential vegetation and simulations of agricultural land. In this paper, we discuss the data sources and methods used and present the resulting dataset, including its limitations and uncertainties. The dataset is available from doi:10.5880/PIK.2016.003 and can be viewed on the website accompanying this paper
Abstract. Reduced-complexity climate models (RCMs) are critical in the policy and decision making space, and are directly used within multiple Intergovernmental Panel on Climate Change (IPCC) reports to complement the results of more comprehensive Earth system models. To date, evaluation of RCMs has been limited to a few independent studies. Here we introduce a systematic evaluation of RCMs in the form of the Reduced Complexity Model Intercomparison Project (RCMIP). We expect RCMIP will extend over multiple phases, with Phase 1 being the first. In Phase 1, we focus on the RCMs' global-mean temperature responses, comparing them to observations, exploring the extent to which they emulate more complex models and considering how the relationship between temperature and cumulative emissions of CO2 varies across the RCMs. Our work uses experiments which mirror those found in the Coupled Model Intercomparison Project (CMIP), which focuses on complex Earth system and atmosphere–ocean general circulation models. Using both scenario-based and idealised experiments, we examine RCMs' global-mean temperature response under a range of forcings. We find that the RCMs can all reproduce the approximately 1 ∘C of warming since pre-industrial times, with varying representations of natural variability, volcanic eruptions and aerosols. We also find that RCMs can emulate the global-mean temperature response of CMIP models to within a root-mean-square error of 0.2 ∘C over a range of experiments. Furthermore, we find that, for the Representative Concentration Pathway (RCP) and Shared Socioeconomic Pathway (SSP)-based scenario pairs that share the same IPCC Fifth Assessment Report (AR5)-consistent stratospheric-adjusted radiative forcing, the RCMs indicate higher effective radiative forcings for the SSP-based scenarios and correspondingly higher temperatures when run with the same climate settings. In our idealised setup of RCMs with a climate sensitivity of 3 ∘C, the difference for the ssp585–rcp85 pair by 2100 is around 0.23∘C(±0.12 ∘C) due to a difference in effective radiative forcings between the two scenarios. Phase 1 demonstrates the utility of RCMIP's open-source infrastructure, paving the way for further phases of RCMIP to build on the research presented here and deepen our understanding of RCMs.
Abstract. To assess the history of greenhouse gas emissions and individual countries' contributions to emissions and climate change, detailed historical data is needed. We combine several published datasets to create a comprehensive set of emission pathways of each country and Kyoto gas covering the years 1850 to 2014 for all UNFCCC member states as well as most non-UNFCCC territories. The sectoral resolution is that of the main IPCC 1996 categories. Additional subsectors are available for time series of CO2 from energy and industry. Country resolved data is combined from different sources and supplemented using growth rates from region resolved sources and numerical extrapolations to complete the dataset. Regional deforestation emissions are downscaled to country level using estimates of the deforested area obtained from potential vegetation and simulations of agricultural land. In this paper, we discuss the data sources and methods used and present the resulting dataset including its limitations and uncertainties. The dataset is available from http://doi.org/10.5880/PIK.2016.003 and can be viewed on the website accompanying this paper (www.pik-potsdam.de/primap-live/primap-hist/).
Over the last decades, climate science has evolved rapidly across multiple expert domains.Our best tools to capture state-of-the-art knowledge in an internally self-consistent modeling framework are the increasingly complex fully coupled Earth System Models (ESMs). However, computational limitations and the structural rigidity of ESMs mean that the full range of uncertainties across multiple domains are difficult to capture with ESMs alone. The tools of choice are instead more computationally efficient reduced complexity models (RCMs), which are structurally flexible and can span the response dynamics across a range of domain-specific models and ESM experiments. Here we present Phase 2 of the Reduced Complexity Model Intercomparison Project (RCMIP Phase 2), the first comprehensive intercomparison of RCMs that are probabilistically calibrated with key benchmark ranges from specialized research communities. Unsurprisingly, but crucially, we find that models which have been constrained to reflect the key benchmarks better reflect the key benchmarks. Under the low-emissions SSP1-1.9 scenario, across the RCMs, median peak warming projections range from 1.3 to 1.7°C (relative to 1850-1900, using an observationally based historical warming estimate of 0.8°C between 1850-1900 and 1995-2014). Further developing methodologies to constrain these projection uncertainties seems paramount given the international community's goal to contain warming to below 1.5°C above preindustrial in the long-term. Our findings suggest that users of RCMs should carefully evaluate their RCM, specifically its skill against key benchmarks and consider the need to include projections benchmarks either from ESM results or other assessments to reduce divergence in future projections.Plain Language Summary Our best tools to capture state-of-the-art knowledge are complex, fully coupled Earth System Models (ESMs). However, ESMs are expensive to run and no single ESM can easily produce responses which represent the full range of uncertainties. Instead, for some applications, computationally efficient reduced complexity climate models (RCMs) are used in a probabilistic setup. An example of these applications is estimating the likelihood that an emissions scenario will stay below a certain global-mean temperature change. Here we present a study (referred to as the Reduced Complexity NICHOLLS ET AL.
Abstract. Here we present results from the first phase of the Reduced Complexity Model Intercomparison Project (RCMIP). RCMIP is a systematic examination of reduced complexity climate models (RCMs), which are used to complement and extend the insights from more complex Earth System Models (ESMs), in particular those participating in the Sixth Coupled Model Intercomparison Project (CMIP6). In Phase 1 of RCMIP, with 14 participating models namely ACC2, AR5IR (2 and 3 box versions), CICERO-SCM, ESCIMO, FaIR, GIR, GREB, Hector, Held et al. two layer model, MAGICC, MCE, OSCAR and WASP, we highlight the structural differences across various RCMs and show that RCMs are capable of reproducing global-mean surface air temperature (GSAT) changes of ESMs and historical observations. We find that some RCMs are capable of emulating the GSAT response of CMIP6 models to within a root-mean square error of 0.2 °C (of the same order of magnitude as ESM internal variability) over a range of scenarios. Running the same model configurations for both RCP and SSP scenarios, we see that the SSPs exhibit higher effective radiative forcing throughout the second half of the 21st Century. Comparing our results to the difference between CMIP5 and CMIP6 output, we find that the change in scenario explains approximately 46 % of the increase in higher end projected warming between CMIP5 and CMIP6. This suggests that changes in ESMs from CMIP5 to CMIP6 explain the rest of the increase, hence the higher climate sensitivities of available CMIP6 models may not be having as large an impact on GSAT projections as first anticipated. A second phase of RCMIP will complement RCMIP Phase 1 by exploring probabilistic results and emulation in more depth to provide results available for the IPCC's Sixth Assessment Report author teams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.