Purpose:To demonstrate the feasibility of a four-dimensional phase contrast (PC) technique that permits spatial and temporal coverage of an entire three-dimensional volume, to quantitatively validate its accuracy against an established time resolved two-dimensional PC technique to explore advantages of the approach with regard to the fourdimensional nature of the data. Materials and Methods:Time-resolved, three-dimensional anatomical images were generated simultaneously with registered three-directional velocity vector fields. Improvements compared to prior methods include retrospectively gated and respiratory compensated image acquisition, interleaved flow encoding with freely selectable velocity encoding (venc) along each spatial direction, and flexible trade-off between temporal resolution and total acquisition time. Results:The implementation was validated against established two-dimensional PC techniques using a well-defined phantom, and successfully applied in volunteer and patient examinations. Human studies were performed after contrast administration in order to compensate for loss of inflow enhancement in the four-dimensional approach. Conclusion:Advantages of the four-dimensional approach include the complete spatial and temporal coverage of the cardiovascular region of interest and the ability to obtain high spatial resolution in all three dimensions with higher signal-to-noise ratio compared to two-dimensional methods at the same resolution. In addition, the four-dimensional nature of the data offers a variety of image processing options, such as magnitude and velocity multi-planar reformation, three-directional vector field plots, and velocity profiles mapped onto selected planes of interest.
A method of magnetic resonance image acquisition and reconstruction is described in which high imaging rates and fast reconstruction times are allowed. The acquisition is a modification of the basic FLASH sequence but with a restricted number N of phase encodings. The encodings are applied sequentially, periodically, and continuously. Images are formed by sliding a window of width N encodings along the acquired data and reconstructing an image for each position of the window. In general the acquisition time per image exceeds the time between successive images, and the method thus has a temporal lag. Experimental studies were performed with a dynamic phantom using 48 phase encodings and a TR of 20 ms, for an image acquisition time of about 1 s. The image display rate in the reconstructed sequence was 12.5 images/s, and the image sequence portrayed the motion of the phantom. Additional studies were done with 24 encodings. It is shown how the sliding window technique lends itself to high-speed reconstruction, with each newly acquired echo used to quickly update the image on display. The combination of the acquisition technique described and a hardware implementation of the reconstruction algorithm can result in realtime MR image acquisition and reconstruction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.