Yeast cells Saccharomyces cerevisiae, late embryogenic abundant-like stress response protein Hsp 12 (heat-shock protein 12) were found by immunocytochemistry to be located both in the cytoplasm and in the cell wall, from where they could be extracted with dilute NaOH solutions. Yeast cells with the Hsp 12 gene disrupted were unable to grow in the presence of either 12 mM caffeine or 0.43 mM Congo Red, molecules known to affect cell-wall integrity. The volume of yeast cells were less affected by rapid changes in the osmolality of the growth medium when compared with the wild-type yeast cells, suggesting a role for Hsp 12 in the flexibility of the cell wall. This was also suggested by subjecting the yeast cells to rapid changes in barometric pressure where it was found that wild-type yeast cells were more resistant to cellular breakage.
The gene for the green fluorescent protein (GFP) was fused in-frame to the 3′ end of HSP12. This construct was regulated by the HSP12 promoter in a pYES2 yeast expression vector. No fluorescence was observed in yeast growing exponentially in glucose-containing medium, but fluorescence was observed when the yeast entered the stationary phase. Fluorescence microscopy indicated that the fusion protein was localized to the peripheral regions of the cell as well as to the cytoplasm and the tonoplast. Subjecting the yeast to a variety of stresses known to induce HSP12 transcription, including salt, osmotic, ethanol, and heat stress, resulted in a time-dependent increase in GFP fluorescence. The use of this system as a method to assess the general stress status of yeast growing in an industrial application is proposed. (Journal of Biomolecular Screening 2005: 253-259)
The response of the yeast Saccharomyces cerevisiae to sudden vs. gradual changes in different environmental stress conditions during both respiratory growth and aerobic fermentative growth in the presence of excess glucose was investigated by monitoring the level and rate of expression of the stress response protein Hsp12p using the fluorescent fusion construct Hsp12p-Gfp2p. The initial expression level and the rate of Hsp12p synthesis was significantly greater under glucose-limited conditions in the chemostat (D<0.14 h(-1)) compared with when excess glucose was present in the auxostat. Decreasing the dilution rate and the glucose concentration further in the A-stat resulted in increased Hsp12p expression, which was more marked when a rapid rather than a gradual change was affected. Common stress factors such as NaCl, ethanol and elevated temperature caused stress responses in both D-stat and auxo-accelerostat culture. The magnitude of the stress response depended on the stress factor, cultivation conditions as well as the rate of change of the stress factor. The rate of Hsp12p synthesis increased due to all applied stresses, with the observed increase between 2 and 20 times lower when the stress was applied gradually rather than rapidly. The results suggested that the Hsp12p expression rate is a good indicator of applied stress in S. cerevisiae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.