We report a facile particle mediated aggregation protocol to synthesize "sea urchin"-like gold mesoparticles with tailored surface topography via a secondary nucleation and growth process. Surprisingly, these multitip Au mesoparticles are capable of self-assembling into monolayer or multiple layer arrays on Si substrates with a convincing reproducibility and homogeneity over large areas. Raman measurements show that these individual sea urchin-like multitipped gold mesoparticles exhibit a high enhancement of surface-enhanced Raman scattering (SERS). In addition, the sea urchin-like mesoparticle arrays display a further enhancement of SERS by 1 or 2 orders of magnitude over the individual mesoparticle due to the formation of additional hot spots between the particles. The current protocol stands out as a potentially interesting approach for the fabrication of technologically important SERS-based sensors.
Following the ever-expanding technological demands, printed electronics has shown palpable potential to create new and commercially viable technologies that will benefit from its unique characteristics, such as, large-area and wide range of substrate compatibility, conformability and low-cost. Through the last few decades, printed/solution-processed field-effect transistors (FETs) and circuits have witnessed immense research efforts, technological growth and increased commercial interests. Although printing of functional inks comprising organic semiconductors has already been initiated in early 1990s, gradually the attention, at least partially, has been shifted to various forms of inorganic semiconductors, starting from metal chalcogenides, oxides, carbon nanotubes and very recently to graphene and other 2D semiconductors. In this review, the entire domain of printable inorganic semiconductors is considered. In fact, thanks to the continuous development of materials/functional inks and novel design/printing strategies, the inorganic printed semiconductor-based circuits today have reached an operation frequency up to several hundreds of kilohertz with only a few nanosecond time delays at the individual FET/inverter levels; in this regard, often circuits based on hybrid material systems have been found to be advantageous. At the end, a comparison of relative successes of various printable inorganic semiconductor materials, the remaining challenges and the available future opportunities are summarized.
Printed electronics (PE) represents any electronic devices, components or circuits that can be processed using modern-day printing techniques. Field-effect transistors (FETs) and logics are being printed with intended applications requiring simple circuitry on large, flexible (e.g., polymer) substrates for low-cost and disposable electronics. Although organic materials have commonly been chosen for their easy printability and low temperature processability, high quality inorganic oxide-semiconductors are also being considered recently. The intrinsic mobility of the inorganic semiconductors are always by far superior than the organic ones; however, the commonly expressed reservations against the inorganic-based printed electronics are due to major issues, such as high processing temperatures and their incompatibility with solution-processing. Here we show a possibility to circumvent these difficulties and demonstrate a room-temperature processed and inkjet printed inorganic-oxide FET where the transistor channel is composed of an interconnected nanoparticle network and a solid polymer electrolyte serves as the dielectric. Even an extremely conservative estimation of the field-effect mobility of such a device yields a value of 0.8 cm(2)/(V s), which is still exceptionally large for a room temperature processed and printed transistor from inorganic materials.
It has been shown that oxide ceramics containing multiple transition and/or rare-earth elements in equimolar ratios have a strong tendency to crystallize in simple single phase structures, stabilized by the high configurational entropy. In analogy to the metallic alloy systems, these oxides are denoted high entropy oxides (HEOs). The HEO concept allows to access hitherto uncharted areas in the multi-element phase diagram. Among the already realized structures there is the highly complex class of rare earth -transition element perovskites. This fascinating class of materials generated by applying the innovative concept of high entropy stabilization provides a new and manyfold research space with promise of discoveries of unprecedented properties and phenomena. The present study provides a first investigation of the magnetic properties of selected compounds of this novel class of materials. Comprehensive studies by DC and AC magnetometry are combined with element specific spectroscopy in order to understand the interplay between magnetic exchange and the high degree of chemical disorder in the systems. We observe a predominant antiferromagnetic behavior in the single phase materials, combined with a small ferromagnetic contribution. The latter can be attributed to either small ferromagnetic clusters or configurations in the antiferromagnetic matrix or a possible spin canting. In the long term perspective it is proposed to screen the properties of this family of compounds with high throughput methods, including combined experimental and theoretical approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.