Today's shared-memory parallel programming models are complex and error-prone.While many parallel programs are intended to be deterministic, unanticipated thread interleavings can lead to subtle bugs and nondeterministic semantics. In this paper, we demonstrate that a practical type and effect system can simplify parallel programming by guaranteeing deterministic semantics with modular, compile-time type checking even in a rich, concurrent object-oriented language such as Java. We describe an object-oriented type and effect system that provides several new capabilities over previous systems for expressing deterministic parallel algorithms.We also describe a language called Deterministic Parallel Java (DPJ) that incorporates the new type system features, and we show that a core subset of DPJ is sound. We describe an experimental validation showing thatDPJ can express a wide range of realistic parallel programs; that the new type system features are useful for such programs; and that the parallel programs exhibit good performance gains (coming close to or beating equivalent, nondeterministic multithreaded programs where those are available).
A number of deterministic parallel programming models with strong safety guarantees are emerging, but similar support for nondeterministic algorithms, such as branch and bound search, remains an open question. We present a language together with a type and effect system that supports nondeterministic computations with a deterministic-by-default guarantee: nondeterminism must be explicitly requested via special parallel constructs (marked nd), and any deterministic construct that does not execute any nd construct has deterministic input-output behavior. Moreover, deterministic parallel constructs are always equivalent to a sequential composition of their constituent tasks, even if they enclose, or are enclosed by, nd constructs. Finally, in the execution of nd constructs, interference may occur only between pairs of accesses guarded by atomic statements, so there are no data races, either between atomic statements and unguarded accesses (strong isolation) or between pairs of unguarded accesses (stronger than strong isolation alone). We enforce the guarantees at compile time with modular checking using novel extensions to a previously described effect system. Our effect system extensions also enable the compiler to remove unnecessary transactional synchronization. We provide a static semantics, dynamic semantics, and a complete proof of soundness for the language, both with and without the barrier removal feature. An experimental evaluation shows that our language can achieve good scalability for realistic parallel algorithms, and that the barrier removal techniques provide significant performance gains.
Tele-immersive systems can improve productivity and aid communication by allowing distributed parties to exchange information via a shared immersive experience. The TEEVE research project at the University of Illinois at Urbana-Champaign and the University of California at Berkeley seeks to foster the development and use of tele-immersive environments by a holistic integration of existing components that capture, transmit, and render three-dimensional (3D) scenes in real time to convey a sense of immersive space. However, the transmission of 3D video poses significant challenges. First, it is bandwidth-intensive, as it requires the transmission of multiple large-volume 3D video streams. Second, existing schemes for 2D color video compression such as MPEG, JPEG, and H.263 cannot be applied directly because the 3D video data contains depth as well as color information. Our goal is to explore from a different angle of the 3D compression space with factors including complexity, compression ratio, quality, and real-time performance. To investigate these trade-offs, we present and evaluate two simple 3D compression schemes. For the first scheme, we use color reduction to compress the color information, which we then compress along with the depth information using zlib. For the second scheme, we use motion JPEG to compress the color information and run-length encoding followed by Huffman coding to compress the depth information. We apply both schemes to 3D videos captured from a real tele-immersive environment. Our experimental results show that: (1) the compressed data preserves enough information to communicate the 3D images effectively (min. PSNR > 40) and (2) even without inter-frame motion estimation, very high compression ratios (avg. > 15) are achievable at speeds sufficient to allow real-time communication (avg. ≈ 13 ms per 3D video frame).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.