Closing the wildland fire heat budget involves characterising the heat source and energy dissipation across the range of variability in fuels and fire behaviour. Meeting this challenge will lay the foundation for predicting direct ecological effects of fires and fire–atmosphere coupling. In this paper, we focus on the relationships between the fire radiation field, as measured from the zenith, fuel consumption and the behaviour of spreading flame fronts. Experiments were conducted in 8 × 8-m outdoor plots using preconditioned wildland fuels characteristic of mixed-oak forests of the eastern United States. Using dual-band radiometers with a field of view of ~18.5 m2 at a height of 4.2 m, we found a near-linear increase in fire radiative energy density over a range of fuel consumption between 0.15 and 3.25 kg m–2. Using an integrated heat budget, we estimate that the fraction of total theoretical combustion energy density radiated from the plot averaged 0.17, the fraction of latent energy transported in the plume averaged 0.08, and the fraction accounted for by the combination of fire convective energy transport and soil heating averaged 0.72. Future work will require, at minimum, instantaneous and time-integrated estimates of energy transported by radiation, convection and soil heating across a range of fuels.
Most landscape-scale fire severity research relies on correlations between field measures of fire effects and relatively simple spectral reflectance indices that are not direct measures of heat output or changes in plant physiology. Although many authors have highlighted limitations of this approach and called for improved assessments of severity, others have suggested that the operational utility of such a simple approach makes it acceptable. An alternative pathway to evaluate fire severity that bridges fire combustion dynamics and ecophysiology via dose–response experiments is presented. We provide an illustrative example from a controlled nursery combustion laboratory experiment. In this example, severity is defined through changes in the ability of the plant to assimilate carbon at the leaf level. We also explore changes in the Differenced Normalised Differenced Vegetation Index (dNDVI) and the Differenced Normalised Burn Ratio (dNBR) as intermediate spectral indices. We demonstrate the potential of this methodology and propose dose–response metrics for quantifying severity in terms of carbon cycle processes.
Small-scale experiments have demonstrated that fire radiative energy is linearly related to fuel combusted but such a relationship has not been shown at the landscape level of prescribed fires. This paper presents field and remotely sensed measures of pre-fire fuel loads, consumption, fire radiative energy density (FRED) and fire radiative power flux density (FRFD), from which FRED is integrated, across forested and non-forested RxCADRE 2011 and 2012 burn blocks. Airborne longwave infrared (LWIR) image time series were calibrated to FRFD and integrated to provide FRED. Surface fuel loads measured in clip sample plots were predicted across burn blocks from airborne lidar-derived metrics. Maps of surface fuels and FRED were corrected for occlusion of the radiometric signal by the overstorey canopy in the forested blocks, and FRED maps were further corrected for temporal and spatial undersampling of FRFD. Fuel consumption predicted from FRED derived from both airborne LWIR imagery and various ground validation sensors approached a linear relationship with observed fuel consumption, which matched our expectation. These field, airborne lidar and LWIR image datasets, both before and after calibrations and corrections have been applied, will be made publicly available from a permanent archive for further analysis and to facilitate fire modelling.
Climate change is projected to exacerbate the intensity of heat waves and drought, leading to a greater incidence of large and high-intensity wildfires in forested ecosystems. Predicting responses of seedlings to such fires requires a process-based understanding of how the energy released during fires affects plant physiology and mortality. Understanding what fire ‘doses’ cause seedling mortality is important for maintaining grasslands or promoting establishment of desirable plant species. We conducted controlled laboratory combustion experiments on replicates of well-watered nursery-grown seedlings. We evaluated the growth, mortality and physiological response of Larix occidentalis and Pinus contorta seedlings to increasing fire radiative energy density (FRED) doses created using natural fuels with known combustion properties. We observed a general decline in the size and physiological performance of both species that scaled with increasing FRED dose, including decreases in leaf-level photosynthesis, seedling leaf area and diameter at root collar. Greater FRED dose increased the recovery time of chlorophyll fluorescence in the remaining needles. This study provides preliminary data on what level of FRED causes mortality in these two species, which can aid land managers in identifying strategies to maintain (or eliminate) woody seedlings of interest.
This study aims to develop a series of robust and efficient methodologies, which can be applied to understand and estimate firebrand generation and to evaluate firebrand showers close to a fire front. A field scale high intensity prescribed fire was conducted in the New Jersey Pine Barrens in March 2013. Vegetation was characterised with field and remotely sensed data, fire spread and intensity was characterised and meteorological conditions were monitored before and during the burn. Firebrands were collected from different locations in the forest and analysed for mass and size distribution. The majority were found to be bark slices (more than 70%) with substantial amounts of pine and shrub twigs. Shrub layer consumption was evaluated to supplement the firebrand generation study. Bark consumption was studied by measuring the circumference variation at several heights on each of three different pine trees. The variation was in the same order of magnitude as the bark thickness (1-5 mm). Testing and improving the protocol can facilitate the collection of compatible data in a wide range of ecosystems and fire environments, aiding in the development of solutions to prevent structural ignition at the Wildland Urban Interface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.