1. After a series of electroconvulsive seizures, levels of TRH-Gly (the immediate precursor of TRH) in four limbic regions correlate significantly and highly with increased swimming in the forced-swim test model of antidepressant efficacy. Only in hippocampus did TRH itself correlate with swimming. 2. After ECS, limbic forebrain regions differ in the relationship of TRH to its precursor peptides. This probably results from differences in the coordination of induction of TRH-processing enzymes, as well as differences in the level of prepro-TRH following seizures. 3. Sprague-Dawley rats that are partially kindled with corneal stimulation swim less in the forced-swim test, opposite to the effect seen with antidepressant agents. 4. Pyriform cortex is unique among the four limbic regions examined in showing decreased amounts of the TRH precursor following swim/stress. 5. Combining ECS with the forced-swim test of antidepressant effects creates a useful model for studying the involvement of TRH and its precursor peptides in both the antidepressant and anticonvulsant effects of controlled therapeutic seizures in the treatment of major depressive disorders. Regional differences between the effects of pinnate and corneal ECS on peptides and behavior support the idea that corneal ECS is a better model than pinnate ECS for human bitemporal ECT. 6. Together with recent results in other laboratories, our results suggest that a series of generalized seizures results in prolonged and increased release and action of TRH in limbic forebrain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.