4 e série, t. 42, 2009, p. 783 à 835 CONVEX BODIES ASSOCIATED TO LINEAR SERIES ʙʏ Rʙʀ LAZARSFELD ɴ Mɪʀ MUSTAT ,Ȃ Aʙʀ. -In his work on log-concavity of multiplicities, Okounkov showed in passing that one could associate a convex body to a linear series on a projective variety, and then use convex geometry to study such linear systems. Although Okounkov was essentially working in the classical setting of ample line bundles, it turns out that the construction goes through for an arbitrary big divisor. Moreover, this viewpoint renders transparent many basic facts about asymptotic invariants of linear series, and opens the door to a number of extensions. The purpose of this paper is to initiate a systematic development of the theory, and to give some applications and examples.R. -Dans son travail sur la log-concavité des multiplicités, Okounkov montre au passage que l'on peut associer un corps convexe à un système linéaire sur une variété projective, puis utiliser la géométrie convexe pour étudier ces systèmes linéaires. Bien qu'Okounkov travaille essentiellement dans le cadre classique des fibrés en droites amples, il se trouve que sa construction s'étend au cas d'un grand diviseur arbitraire. De plus, ce point de vue permet de rendre transparentes de nombreuses propriétés de base des invariants asymptotiques des systèmes linéaires, et ouvre la porte à de nombreuses extensions. Le but de cet article est d'initier un développement systématique de la théorie et de donner quelques applications et exemples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.