We investigated the convergence of somatosensory and auditory inputs in within subregions of macaque auditory cortex. Laminar current source density and multiunit activity profiles were sampled with linear array multielectrodes during penetrations of the posterior superior temporal plane in three macaque monkeys. At each recording site, auditory responses to binaural clicks, pure tones, and band-passed noise, all presented by earphones, were compared with somatosensory responses evoked by contralateral median nerve stimulation. Subjects were awake but were not required to discriminate the stimuli. Borders between A1 and surrounding belt regions were identified by mapping best frequency and stimulus preferences and by subsequent histological analysis. Regions immediately caudomedial to A1 had robust somatosensory responses co-represented with auditory responses. In these regions, both somatosensory and auditory response profiles had "feedforward" patterns; initial excitation beginning in Lamina 4 and spreading to extragranular laminae. Auditory and somatosensory responses displayed a high degree of temporal overlap. Anatomical reconstruction indicated that the somatosensory input region includes, but may not be restricted to, the caudomedial auditory association cortex. As was earlier reported for this region, auditory frequency tuning curves were broad and band-passed noise responses were larger than pure tone responses. No somatosensory responses were observed in A1. These findings suggest a potential neural substrate for multisensory integration at an early stage of auditory cortical processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.