Objective. We studied the prevalence of nonalcoholic fatty liver disease (NAFLD) and its clinical correlates in a population of patients with type 2 diabetes mellitus (T2DM). Methods. Clinical data of 94,577 T2DM patients were retrieved from 160 diabetes clinics in Italy in a standardized format and centrally analyzed anonymously. After exclusion of 5967 cases (high or uncertain alcohol intake), in 38,880 the Fatty Liver Index (FLI) was used as a proxy for the diagnosis of NAFLD. Factors associated with FLI assessed NAFLD (FLI-NAFLD) were evaluated through multivariate analysis. Results. FLI-NAFLD was present in 59.6% of patients. Compared to non-NAFLD, FLI-NAFLD was associated with impairment in renal function, higher albumin excretion, HbA1c and blood pressure, lower HDL cholesterol, and poorer quality of care. ALT was within normal limits in 73.6% of FLI-NAFLD patients (45.6% if the updated reference values were used). The prevalence of FLI-NAFLD did not differ if the whole sample (94,577 cases) was examined, irrespective of alcohol intake. Conclusions. FLI-NAFLD was present in the majority of T2DM patients of our sample and metabolic derangement, not alcohol consumption, was mainly associated with the disease. FLI-NAFLD patients have a worse metabolic profile. ALT levels are not predictive of NAFLD.
Both chronic hyperglycemia and ischemia/reperfusion (IR) cause an imbalance in the oxidative state of tissues. Normoglycemic and streptozotocin (STZ)-diabetic rats were subjected to bilateral carotid artery occlusion for 30 min followed by reperfusion for 60 min. Rats had either been treated with dehydroepiandrosterone (DHEA) for 7, 14, or 21 days (2 or 4 mg/day per rat) or left untreated. Oxidative state, antioxidant balance, and membrane integrity were evaluated in isolated synaptosomes. IR increased the levels of reactive species and worsened the synaptic function, affecting membrane Na/K-ATPase activity and lactate dehydrogenase release in all rats. The oxidative imbalance was much severer when transient IR was induced in STZ-diabetic rats. DHEA treatment restored H 2 O 2 , hydroxyl radical, and reactive oxygen species to close to control levels in normoglycemic rats and significantly reduced the level of all reactive species in STZ-diabetic rats. Moreover, DHEA treatment counteracted the detrimental effect of IR on membrane integrity and function: the increase of lactate dehydrogenase release and the drop in Na/K-ATPase activity were significantly prevented in both normoglycemic and STZ-diabetic rats. The results confirm that DHEA, an adrenal steroid that is synthesized de novo by brain neurons and astrocytes, possesses a multitargeted antioxidant effect. They also show that DHEA treatment is effective in preventing both derangement of the oxidative state and neuronal damage induced by IR in experimental diabetes. Diabetes
Oxidative stress induced by chronic hyperglycemia contributes to cerebrovascular complications in diabetes. Reactive oxygen species activate the transcription factor nuclear factor-kappaB (NF-kappaB), which in turn activates a variety of target genes linked to the development of diabetic complications. Dehydroepiandrosterone, an adrenal steroid, which possesses a multitargeted antioxidant effects, is also synthesized de novo by the brain. Normoglycemic and streptozotocin-diabetic rats were either treated with dehydroepiandrosterone (DHEA) for 7, 14, or 21 d (4 mg/d per rat) or left untreated. Oxidative state, antioxidant balance and activation of nuclear transcriptional redox-sensitive factor NF-kappaB were evaluated in the hippocampus area. In streptozotocin-treated rats, besides the strong increase in oxygen reactive species, there is also a persistent activation of NF-kappaB. The derangement of the oxidative balance in the brain induced by diabetes improves with DHEA. Moreover, DHEA completely counteracts NF-kappaB activation, measured as DNA binding activity, and hinders the increase of IkappaB-alpha inhibitory subunit induced by oxidative stress. The time-lag of DHEA's effects on NF-kappaB activation parallels its effects on oxidative balance. Results indicate that DHEA might protect hippocampus from chronic activation of NF-kappaB-dependent genes by reducing NF-kappaB nuclear translocation. This could result in protection from diabetes-dependent brain damage.
Cancer-related cachexia, that is present in about 50% of cancer patients and accounts for 20% of all cancer deaths, is clinically characterized by progressive weight loss, anorexia, metabolic alterations, asthenia, depletion of lipid stores and severe loss of skeletal muscle proteins. The main biochemical and molecular alterations that are responsible for the syndrome are prematurely present in the progress of the disease and the identification of the early stages of cachexia can be useful in targetting patients who will benefit from early treatment. The aim of the present study was to delineate the bio-humoral profile of a group of lung cancer patients either non-cachectic or cachectic by evaluating serum proinflammatory cytokines and oxidative stress/antioxidant parameters (both recognized to be involved in cachexia pathogenesis) and pro-inflammatory cytokine gene expression in PBMC (Peripheral blood mononuclear cells) of cancer patients. All serum pro-inflammatory cytokines and oxidative stress/antioxidant parameters significantly increased in neoplastic patients, but only TNF-α, ROS, GSH and vitamin E showed a significantly greater increase in cachectic patients. Pro-inflammatory cytokine gene expression mirrored serum level behaviour except for IL-6 that was increased in serum but not as gene expression, suggesting its provenience from tumour tissue. Our data support that the simultaneous determination of ROS, GSH, vitamin E, together with TNF-α allows the identification of a lung cancer patient developing cancer-related cachexia. This bio-humoral profile should be used for the early diagnosis and follow-up of the syndrome. Moreover, the evaluation of gene expression in patient PBMC was helpful in differentiating tumour vs host factors, therefore being useful in the study of pathogenetic mechanisms in neoplastic cachectic patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.