ABSTRACT.Purpose: To evaluate whether a significant age-related thinning of the retinal nerve fibre layer (RNFL) is measurable by means of scanning laser polarimetry with variable corneal compensation (GDx-VCC) in a sample of healthy eyes. Methods: A sample of 324 eyes of 324 healthy subjects (mean age 56 ± 14 years, range 21-85 years) underwent a complete ophthalmic evaluation, standard automated perimetry and RNFL scan with the GDx-VCC. Temporal-superior-nasal-inferior-temporal (TSNIT), superior and inferior average (SA and IA) values provided on the printout were collected and their mean value averaged from all eyes and also after separating the eyes by gender and by age decades. The values of the three parameters were plotted against age and linear regression was calculated. Results: Ageing is associated with a significant RNFL thinning (0.08 l, 0.16 l and 0.12 l per year for TSNIT, SA and IA, respectively; p < 0.001). Analysis showed a similar association with age decade (p < 0.001 on anova). For the TSNIT average, a 9.5% thinning from baseline values was estimated for a 65-year lifespan. Corresponding values for SA and IA were 16.2% and 11.7%, respectively. Conclusions: Analysis by GDx-VCC confirmed previous reports about significant age-related RNFL thinning. However, a lower rate per year was found, probably because GDx-VCC measurements are much more reliable than those obtained with the previous generation of polarimeters.
SLP-VCC allows good discrimination between healthy and glaucomatous eyes. New software-provided parameters NFI, TSNIT average, and normalized superior and inferior areas appear to be reliable in the evaluation of glaucomatous disease. In particular, after evaluation on interval LRs, the NFI showed a high diagnostic accuracy for values 40.
Glaucoma is a leading cause of irreversible blindness worldwide. Retinal ganglion cells and their axons represent the selective target of the disease. When visual function is still intact on standard automated perimetry and optic disc appearance is suspicious, an early diagnosis may be supported by the identification of a retinal nerve fibre layer (RNFL) defect in the peripapillary area. At present days, computer-based, real-time imaging of the peripapillary RNFL is available through instruments of easy use and with high levels of accuracy and reproducibility. Scanning laser polarimetry is performed by a confocal scanning laser ophthalmoscope with an integrated polarimeter (GDx-VCC). There is a considerable amount of scientific evidence about the role of this imaging technique for glaucoma diagnosis. The aim of this review is to describe the principles of operation, the examination procedure, the clinical role, the results of main diagnostic studies and the future development of the software for the scanning laser polarimetry.
Background: To assess intersession reproducibility of retinal nerve fiber layer (RNFL) thickness measurements on scanning laser polarimetry with variable corneal compensation (GDx-VCC) in a sample of healthy subjects and glaucoma patients. Methods: One eye each from 29 healthy and 29 glaucomatous subjects was selected and underwent RNFL scanning by the same operator at baseline and 1 week later. Glaucoma diagnosis relied on the presence of a reproducible defect on automated perimetry. GDx-VCC parameters considered were those available on page 1 of the printout [TSNIT average and standard deviation (SD), superior and inferior average (SA, IA), Nerve Fiber Indicator]. Reproducibility was assessed by calculating coefficient of variation and intraclass correlation coefficient separately for the two groups and for each parameter. The percentage of eyes with an intersession difference in thickness parameters of more than 5% was also calculated. Results: Coefficient of variation was <6% for TSNIT average, SA and IA in both groups. Corresponding values for TSNIT SD in healthy subjects and in glaucoma patients were 13.7 and 11.4%, respectively, whereas for Nerve Fiber Indicator they were 82.9 and 13.3%. Intraclass correlation coefficient ranged from 0.794 to 0.907 in healthy subjects and from 0.924 to 0.972 in glaucoma patients. In healthy subjects, TSNIT average, SA and IA intersession difference was 5% or less in 55–69% of eyes, whereas the value for TSNIT SD was 34.5%. Corresponding values in glaucomatous eyes ranged from 69 to 79.3% for TSNIT average, SA and IA and was 37.9% for TSNIT SD. Conclusions: Intersession reproducibility of RNFL thickness measurements on GDx-VCC is high, both in healthy and in glaucomatous eyes. In a few cases, however, intersession variation may be larger than 10%. Caution is necessary while interpreting these changes during follow-up, in order to separate physiological variability from real RNFL thickness variations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.