The number of research papers available is growing at a staggering rate. Researchers need tools to help them find the papers they should read among all the papers published each year. In this paper, we present and experiment with hybrid recommender algorithms that combine Collaborative Filtering and Content-based Filtering to recommend research papers to users. Our hybrid algorithms combine the strengths of each filtering approach to address their individual weaknesses. We evaluated our algorithms through offline experiments on a database of 102,000 research papers, and through an online experiment with 110 users. For both experiments we used a dataset created from the CiteSeer repository of computer science research papers. We developed separate English and Portuguese versions of the interface and specifically recruited American and Brazilian users to test for cross-cultural effects. Our results show that users value paper recommendations, that the hybrid algorithms can be successfully combined, that different algorithms are more suitable for recommending different kinds of papers, and that users with different levels of experience perceive recommendations differently. These results can be applied to develop recommender systems for other types of digital libraries.
We present several algorithms that solve the single-source shortestpath problem using CUDA. We have run them on a database, composed of hundreds of large graphs represented by adjacency lists and adjacency matrices, achieving high speedups regarding a CPU implementation based on Fibonacci heaps. Concerning correctness, we outline why our solutions work, and show that a previous approach [10] is incorrect.
Abstract. In many engineering applications, we have to combine probabilistic and interval uncertainty. For example, in environmental analysis, we observe a pollution level x(t) in a lake at different moments of time t, and we would like to estimate standard statistical characteristics such as mean, variance, autocorrelation, correlation with other measurements. In environmental measurements, we often only measure the values with interval uncertainty. We must therefore modify the existing statistical algorithms to process such interval data.In this paper, we provide a survey of algorithms for computing various statistics under interval uncertainty and their computational complexity. The survey includes both known and new algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.