In this work we present topic diversification, a novel method designed to balance and diversify personalized recommendation lists in order to reflect the user's complete spectrum of interests. Though being detrimental to average accuracy, we show that our method improves user satisfaction with recommendation lists, in particular for lists generated using the common item-based collaborative filtering algorithm.Our work builds upon prior research on recommender systems, looking at properties of recommendation lists as entities in their own right rather than specifically focusing on the accuracy of individual recommendations. We introduce the intra-list similarity metric to assess the topical diversity of recommendation lists and the topic diversification approach for decreasing the intra-list similarity. We evaluate our method using book recommendation data, including offline analysis on 361, 349 ratings and an online study involving more than 2, 100 subjects.
Collaborative filtering has proven to be valuable for recommending items in many different domains. In this paper, we explore the use of collaborative filtering to recommend research papers, using the citation web between papers to create the ratings matrix. Specifically, we tested the ability of collaborative filtering to recommend citations that would be suitable additional references for a target research paper. We investigated six algorithms for selecting citations, evaluating them through offline experiments against a database of over 186,000 research papers contained in ResearchIndex. We also performed an online experiment with over 120 users to gauge user opinion of the effectiveness of the algorithms and of the utility of such recommendations for common research tasks. We found large differences in the accuracy of the algorithms in the offline experiment, especially when balanced for coverage. In the online experiment, users felt they received quality recommendations, and were enthusiastic about the idea of receiving recommendations in this domain.
The number of research papers available is growing at a staggering rate. Researchers need tools to help them find the papers they should read among all the papers published each year. In this paper, we present and experiment with hybrid recommender algorithms that combine Collaborative Filtering and Content-based Filtering to recommend research papers to users. Our hybrid algorithms combine the strengths of each filtering approach to address their individual weaknesses. We evaluated our algorithms through offline experiments on a database of 102,000 research papers, and through an online experiment with 110 users. For both experiments we used a dataset created from the CiteSeer repository of computer science research papers. We developed separate English and Portuguese versions of the interface and specifically recruited American and Brazilian users to test for cross-cultural effects. Our results show that users value paper recommendations, that the hybrid algorithms can be successfully combined, that different algorithms are more suitable for recommending different kinds of papers, and that users with different levels of experience perceive recommendations differently. These results can be applied to develop recommender systems for other types of digital libraries.
Collaborative filtering has proven to be valuable for recommending items in many different domains. In this paper, we explore the use of collaborative filtering to recommend research papers, using the citation web between papers to create the ratings matrix. Specifically, we tested the ability of collaborative filtering to recommend citations that would be suitable additional references for a target research paper. We investigated six algorithms for selecting citations, evaluating them through offline experiments against a database of over 186,000 research papers contained in ResearchIndex. We also performed an online experiment with over 120 users to gauge user opinion of the effectiveness of the algorithms and of the utility of such recommendations for common research tasks. We found large differences in the accuracy of the algorithms in the offline experiment, especially when balanced for coverage. In the online experiment, users felt they received quality recommendations, and were enthusiastic about the idea of receiving recommendations in this domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.