The simulation of complex engineering components and structures under loads requires the formulation and adequate calibration of appropriate material models. This work introduces an optimisation-based scheme for the calibration of viscoelastic material models that are coupled to gradient-enhanced damage in a finite strain setting. The parameter identification scheme is applied to a self-diagnostic poly(dimethylsiloxane) (PDMS) elastomer, where so-called mechanophore units are incorporated within the polymeric microstructure. The present contribution, however, focuses on the purely mechanical response of the material, combining experiments with homogeneous and inhomogeneous states of deformation. In effect, the results provided lay the groundwork for a future extension of the proposed parameter identification framework, where additional field-data provided by the self-diagnostic capabilities can be incorporated into the optimisation scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.