In Australia, many freshwater wetlands are becoming saline. Knowing which elements of a biotic community will persist as wetlands turn saline is relevant to their future management. We simulated gradual and sudden increases in salinity in outdoor mesocosms to test the hypotheses that: (1) aquatic plant and zooplankton communities exposed to a gradient of increasing salinity over time would initially resemble freshwater communities, but as the salinity increased they would resemble communities found in more saline systems; and (2) that a gradual change in salinity over 6 months influences zooplankton and plant communities in the same way as a sudden salinity change. Below 1000 mg L–1, as salinity increased gradually, communities rich in species and numbers of individuals resembled freshwater communities. However, as the salinity exceeded 1000 mg L–1, taxa were progressively lost and communities became less diverse. When salinities exceeded 3000 mg L–1 the diversity decreased rapidly and few taxa remained at 5000 mg L–1. Both sudden and gradual increases in salinity induced similar decreases in diversity. We predict that as natural wetlands become more saline, few freshwater biota will survive once the salinity exceeds 5000 mg L–1. In the long term, such salinised wetlands would need to be recolonised by salt-tolerant taxa for a functional wetland to persist.
1. In this study we compared the emergence of aquatic biota from sediments under 14-day pulses of high (5000 mg L )1 ) and low (1000 mg L )1 ) salinity with emergence under freshwater and equivalent constant salinity levels. We tested the hypothesis that pulses of high salinity and short duration have no impact on the emergence of aquatic plants and zooplankton from wetland sediment. 2. The way salt is moved through the landscape may alter the response of biota to increases in salinity. Under natural hydrological regimes in rivers and floodplains salinity pulses occur often at concentrations that exceed predicted tolerance levels for aquatic biota. The impacts of natural pulses of high salinity followed by rapid return to fresh conditions may be used to inform management guidelines for the potential release of non-natural saline water into river systems with minimal impact. 3. For both aquatic plants and zooplankton the abundance and richness of the emerging taxa decreased at higher salinities kept at constant levels. In contrast, pulses of salinity followed by return to freshwater conditions did not have a negative impact on the emergence of aquatic plants or zooplankton. For many taxa of zooplankton a positive impact was demonstrated with higher emergence following the salinity pulse. 4. The responses of aquatic plant and zooplankton taxa are grouped into five response types. Type 1: negatively impacted by all salt regimes. Type 2: preference for constant salinities. Type 3: no difference between fresh and either pulse regime. Type 4: preference for high concentration pulses. Type 5: emergence higher under a low concentration pulse. 5. Although previous studies indicate that constant high-level salinity in rivers and wetlands can decrease the species richness of aquatic communities, this current study shows pulses may not have the same impact. Our results support the hypothesis that pulses of high salinity and short duration do not impact on the emergence of aquatic plants and zooplankton from wetland sediments. For zooplankton, pulses of salt may trigger emergence. 6. These trends may be used to explore the potential to use managed water releases to move salt through the landscape with minimal impact of salinity on aquatic biota. However, before such preliminary results are applied in management of saline water releases we need to determine the implications for interacting processes in natural ecosystems.
Microfaunal samples were collected from within the channels of three rivers in north eastern Victoria, Australia (the Murray, Ovens and Broken Rivers) as a component of a study examining the effects of flow on the biota of lowland rivers in Australia. Samples were collected from the water column of the river channel and slackwaters and from the layer of water immediately above the bottom sediment of the slackwaters. There was no connectivity between the river channel and the floodplain wetlands for all three rivers during the sampling period. Substantial numbers of microfauna were resident in the slackwaters of all three rivers, with the greatest densities occurring close to the bottom sediment, with densities often exceeding 1000 animals l )1 whereas in the plankton samples densities were usually less than 500 animals l )1 . The presence of large and diverse microfaunal communities and the lack of connectivity between the river channel and associated floodplain wetland indicate that these communities are capable of persisting and recruiting within riverine channel slackwaters.
Understanding energy flow through ecosystems and among sub-habitats is critical for understanding patterns of biodiversity and ecosystem function. It can also be of considerable applied interest in situations where managing for connectivity among habitats is important for restoring degraded ecosystems. Here, we describe patterns of basal resource quality and identify primary basal energy sources in three habitats-river channels, anabranches and wetlands-of a lowland river floodplain in the Murray River catchment, Australia during a period of disconnected surface flow. We used a combination of stable isotope and fatty acid analyses to determine which basal resources were assimilated by the backswimmer Anisops thienemanni and the Eastern mosquitofish Gambusia holbrooki and assessed food quality across the three habitats. Seston was a primary basal resource for both animals in all three habitats, but was of higher quality within floodplain habitats than in the river channel. Although floodplain seston contained higher concentrations of essential fatty acids, fatty acid profiles of animals from different habitats remained similar. Our research suggests that inundation of floodplains and subsequent reconnection to the river could be valuable to afford riverine animals the opportunity to access high quality resources, but highlights a need to quantitatively assess the transfer of essential fatty acids between trophic levels to determine how much riverine animals are in fact limited by poorer quality food resources. We demonstrate the importance of estimating the quality of organic matter fluxes into food webs, and the potential role of targeted environmental flows to re-establish high quality energy pathways in riverine ecosystems. Food webs represent an important facet of ecosystem function and describe the energy pathways between resources and animals (Hladyz et al. 2012). Within freshwater ecosystems, research has focused on understanding the contribution and importance of terrestrially-and aquatically-derived carbon to food webs (e.g., Rees et al. 2020). Less attention has been oriented towards determining the quality of food resources (e.g., Guo 2018) and the dominant pathways for energy to reach higher trophic levels. Understanding which resources underpin food webs and factors influencing resource availability to animals is key to improving our capacity to gauge ecosystem health (Holland et al. 2020). Food quality, in its coarsest form, may be assessed by ecological stoichiometry (e.g., C : N) however, animals can be limited by availability of complex organic compounds such as amino acids (Dwyer et al. 2018), sterols and fatty acids (Twining et al. 2016). Within freshwater ecosystems, algae and, in particular, diatoms are considered high-quality food resources for herbivorous taxa due to their high concentration of inorganic nutrients (nitrogen and phosphorous) and longchain polyunsaturated fatty acids (e.g. Guo 2018). Some omega-3 (ω3) and omega-6 (ω6) polyunsaturated fatty acids, such as eicosapentaenoic (EPA;...
Benthic biofilms have been identified using stable isotope analysis (SIA) as an important resource supporting many freshwater food webs. However, biofilm d 13 C signatures are highly variable in freshwaters, which may hamper our understanding of energy flow through food webs in these systems. There has been little consideration of the influence that substratum may have on biofilm d 13 C signature variability and energy flows to primary consumers. We investigated the effect of organic and inorganic substrata on biofilm dynamics by examining: (1) temporal variability of biofilm stable isotope (d 13 C, d 15 N) signatures on allochthonous leaf-litter (Eucalyptus camaldulensis) and cobble substrata over 12 months in a lowland river in south-eastern Australia; and (2) the effect of substrata on biofilm energy flows to a grazer snail, Physa acuta (Gastropoda: Physidae), using SIA and ecological stoichiometry in a laboratory experiment. The temporal study indicated that cobble biofilm varied significantly in d 13 C signature during the 12 months (up to 11%), whereas the d 13 C signature of leaf biofilm was less variable (less than 2%). In contrast, biofilm d 15 N signatures varied temporally on both cobble (2.6%) and leaf (1%) substrata. This suggests that leaf biofilm was more reliant on leaf tissue for carbon and therefore less limited by carbon supply than cobble biofilm whereas for nitrogen biofilm on both substrata was reliant on external sources. In the laboratory experiment, snails fed leaf biofilm reflected more of an allochthonous d 13 C signature than cobble biofilm fed snails, suggesting assimilation of leaf carbon via the heterotrophic microbial community within the biofilm. Snails grew largest on cobble biofilm, which had lower C:N ratios than leaf biofilm. Our results demonstrate that the type of substratum can influence the temporal variability of biofilm d 13 C signatures and energy flow to primary consumers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.