It is demonstrated that individuals with different glyphosate resistance mechanisms can coexist in the same population, individuals from different populations may carry different resistance mechanisms and different mechanisms can act in concert within single E. colona plants. However, other plant factors or resistance mechanisms appear to modulate plant expression of EPSPS sensitivity to glyphosate.
A suspected glyphosate-resistant (R) junglerice population was collected from a glyphosate-R corn field near Durham in northern California where glyphosate had been applied at least twice a year for over 6 yr. Based on the amount of glyphosate required to reduce growth by 50% (ED50), the R population was 6.6 times more R than the susceptible (S) standard population. Based on the glyphosate concentration that inhibits EPSPS by 50% based on shikimate accumulation (I50) in leaf discs, R plants were four times more R than S plants. By 3 d after treatment with 0.42 kg ae ha−1glyphosate, the S population had accumulated approximately five times more shikimate than the R population. No differences in [14C]-glyphosate uptake and translocation were detected between R and S plants. However, partial sequencing of theEPSPSgene revealed a mutation in R plants causing a proline to serine change at EPSPS position 106 (P106S). Our results reveal the first case of a P106S target site mutation associated with glyphosate resistance in junglerice.
Herbicide resistance is a challenge for modern agriculture further complicated by cases of resistance to multiple herbicides. Conyza bonariensis and Conyza canadensis are invasive weeds of field crops, orchards, and non-cropped areas in many parts of the world. In California, USA, Conyza populations resistant to the herbicides glyphosate and paraquat have recently been described. Although the mechanism conferring resistance to glyphosate and paraquat in these species was not elucidated, reduced translocation of these herbicides was observed under experimental conditions in both species. Glyphosate and paraquat resistance associated with reduced translocation are hypothesized to be a result of sequestration of herbicides into the vacuole, with the possible involvement of over-expression of genes encoding tonoplast transporters of ABC-transporter families in cases of glyphosate resistance or cationic amino acid transporters (CAT) in cases of paraquat resistance. However, gene expression in response to herbicide treatment has not been studied in glyphosate and paraquat resistant populations. In the current study, we evaluated the transcript levels of genes possibly involved in resistance using real-time PCR. First, we evaluated eight candidate reference genes following herbicide treatment and selected three genes that exhibited stable expression profiles; ACTIN, HEAT-SHOCK-PROTEIN-70, and CYCLOPHILIN. The reference genes identified here can be used for further studies related to plant-herbicide interactions. We used these reference genes to assay the transcript levels of EPSPS, ABC transporters, and CAT in response to herbicide treatment in susceptible and resistant Conyza spp. lines. No transcription changes were observed in EPSPS or CAT genes after glyphosate or paraquat treatment, suggesting that these genes are not involved in the resistance mechanism. Transcription of the two ABC transporter genes increased following glyphosate treatment in all Conyza spp. lines. Transcription of ABC transporters also increased after paraquat treatment in all three lines of C. bonariensis. However, in C. canadensis, paraquat treatment increased transcription of only one ABC transporter gene in the susceptible line. The increase in transcription of ABC transporters after herbicide treatment is likely a stress response based on similar response observed across all Conyza lines regardless of resistance or sensitivity to glyphosate or paraquat, thus these genes do not appear to be directly involved in the mechanism of resistance in Conyza spp.
Background Understanding the determinants of free asparagine concentration in wheat grain is necessary to reduce levels of the processing contaminant acrylamide in baked and toasted wheat products. Although crop management strategies can help reduce asparagine concentrations, breeders have limited options to select for genetic variation underlying this trait. Asparagine synthetase enzymes catalyse a critical step in asparagine biosynthesis in plants and, in wheat, are encoded by five homeologous gene triads that exhibit distinct expression profiles. Within this family, TaASN2 genes are highly expressed during grain development but TaASN-B2 is absent in some varieties. Results Natural genetic diversity in the asparagine synthetase gene family was assessed in different wheat varieties revealing instances of presence/absence variation and other polymorphisms, including some predicted to affect the function of the encoded protein. The presence and absence of TaASN-B2 was determined across a range of UK and global common wheat varieties and related species, showing that the deletion encompassing this gene was already present in some wild emmer wheat genotypes. Expression profiling confirmed that TaASN2 transcripts were only detectable in the grain, while TaASN3.1 genes were highly expressed during the early stages of grain development. TaASN-A2 was the most highly expressed TaASN2 homeologue in most assayed wheat varieties. TaASN-B2 and TaASN-D2 were expressed at similar, lower levels in varieties possessing TaASN-B2. Expression of TaASN-A2 and TaASN-D2 did not increase to compensate for the absence of TaASN-B2, so total TaASN2 expression was lower in varieties lacking TaASN-B2. Consequently, free asparagine concentrations in field-produced grain were, on average, lower in varieties lacking TaASN-B2, although the effect was lost when free asparagine accumulated to very high concentrations as a result of sulphur deficiency. Conclusions Selecting wheat genotypes lacking the TaASN-B2 gene may be a simple and rapid way for breeders to reduce free asparagine concentrations in commercial wheat grain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.