No abstract
Current quantum cryptography implementations focus on fiber-based or fixed free-space point-to-point channels. We seek to expand this to quantum communication from mobile platforms. Here, we report progress towards tracking system stabilization and air-to-air signal coupling.
Quantum key distribution (QKD) systems provide a method for two users to exchange a provably secure key. Synchronizing the users’ clocks is an essential step before a secure key can be distilled. Qubit-based synchronization protocols directly use the transmitted quantum states to achieve synchronization and thus avoid the need for additional classical synchronization hardware. Previous qubit-based synchronization protocols sacrifice secure key either directly or indirectly, and all known qubit-based synchronization protocols do not efficiently use all publicly available information published by the users. Here, we introduce a Bayesian probabilistic algorithm that incorporates all published information to efficiently find the clock offset without sacrificing any secure key. Additionally, the output of the algorithm is a probability, which allows us to quantify our confidence in the synchronization. For demonstration purposes, we present a model system with accompanying simulations of an efficient three-state BB84 prepare-and-measure protocol with decoy states. We use our algorithm to exploit the correlations between Alice’s published basis and mean photon number choices and Bob’s measurement outcomes to probabilistically determine the most likely clock offset. We find that we can achieve a 95 percent synchronization confidence in only 4140 communication bin widths, meaning we can tolerate clock drift approaching 1 part in 4140 in this example when simulating this system with a dark count probability per communication bin width of 8×10−4 and a received mean photon number of 0.01.
Current QKD protocols are limited to wired point to point key exchange. Utilizing drones, we work to establish free space quantum channels. Here, we report the progress of the tracking system used on the drones.
Quantum networks between mobile platforms enable secure communication, distributed quantum sensors, and distributed quantum computing. As progress towards a future quantum internet continues, connecting mobile platforms (e.g., unmanned drones, smart vehicles, ships, and planes) to quantum networks remains a challenge. For instance, engineering constraints for real-world mobile platforms require low size, weight, and power (SWaP) for quantum systems. Additionally, single photons must be routed to platforms that are in motion and experience vibrations. In this effort, we discuss progress toward developing and demonstrating quantum communication links, including decoy-state quantum key distribution (QKD), between mobile drone and vehicle platforms in several configurations (drone-to-drone, drone-to-moving vehicle, and vehicle-to-vehicle). We will discuss and analyze critical subsystems including our decoy-state QKD source based on resonant cavity light emitting diodes (LED), compact optical system design, pointing, acquisition, and tracking (PAT) subsystem, single-photon detectors, field-programmable gate array-based time-tagger, and a novel time-synchronization algorithm. In addition, we present system performance including tracking performance under multiple conditions and mobile platform configurations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.