<p><strong>Abstract.</strong> Biogenic volatile organic compounds (BVOCs) from the Amazon forest region represent the largest source of organic carbon emissions to the atmosphere globally. These BVOC emissions dominantly consist of volatile and intermediate volatility terpenoid compounds that undergo chemical transformations in the atmosphere to form oxygenated condensable gases and secondary organic aerosol (SOA). We collected quartz filter samples with 12-hour time resolution and performed hourly in-situ measurements with the Semi-Volatile Thermal desorption Aerosol Gas chromatograph (SV-TAG) at a rural site (<q>T3</q>) located to the west of the urban center of Manaus, Brazil as part of the Green Ocean Amazon (GoAmazon2014/5) field campaign to measure intermediate volatility and semi-volatile BVOCs and their oxidation products during the wet and dry seasons. We speciated and quantified 30 sesquiterpenes and four diterpenes with concentrations in the range 0.01&#8211;6.04&#8201;ng&#8201;m<sup>&#8722;3</sup> (1&#8211;670&#8201;ppq<sub>v</sub>). We estimate that sesquiterpenes contribute approximately 14&#8201;% and 12&#8201;% to the total reactive loss of O<sub>3</sub> via reaction with isoprene or terpenes during the wet and dry seasons, respectively. This is reduced from ~&#8201;50&#8211;70&#8201;% for within-canopy reactive O<sub>3</sub> loss, attributed to ozonolysis of highly reactive sesquiterpenes (e.g. &#946;-caryophyllene) that are reacted away before reaching our measurement site. We further identify a suite of their oxidation products in the gas and particle phases and explore their role in biogenic SOA formation in the Central Amazon region. Synthesized authentic standards were also used to quantify gas- and particle-phase oxidation products derived from &#946;-caryophyllene. Using tracer-based scaling methods for these products, we roughly estimate that sesquiterpene oxidation contributes at least 1&#8211;18&#8201;% (median 5&#8201;%) of total submicron OA mass. However, this is likely a low-end estimate, as evidence for additional unaccounted sesquiterpenes and their oxidation products clearly exists. By comparing our field data to laboratory-based sesquiterpene oxidation experiments we confirm more than 40 additional observed compounds produced through sesquiterpene oxidation are present in Amazonian SOA, warranting further efforts towards more complete quantification.</p>
The vegetal species Arachis repens, commonly known as peanut grass, was studied and, for the first time, we detected the presence of the bioactive compound trans-resveratrol (t-RSV). We compared the efficiency of three different methodologies (conventional maceration [CM], ultrasound-assisted extractions [UAE], and microwave-assisted extractions [MAE]) concerning total phenolics (TP) and resveratrol (t-RSV) content, followed by antioxidant activity (AA) evaluation. By CM, at 1 h, the highest RSV content (1.024 ± 0.036 mg/L) and, correspondingly, the highest DPPH capture (23.90 ± 0.04%) were found. The TP contents, at 1 h, presented the highest value (27.26 ± 0.26 mg/g GAE). By the UAE, the maximum yields of TP (357.18 mg/g GAE) and RSV (2.14 mg/L), as well as, the highest AA (70.95%), were obtained by 5 min after a maceration pretreatment, on the solid-solvent ratio 1 : 40 w/v. For MAE, a central composite rotatable design (CCRD) was applied followed by the FFD design in order to evaluate the statistical effects of four independent variables on the extraction of RSV. The optimal conditions established for obtaining the highest recovery (2.516 mg/g) were 20 min; 90% MeOH aq.; 120 rpm; 60°C; and solid-solvent ratio: 1 : 35 w/v. Relevant correlations were established considering the TP and RSV contents, as well as the AA, corroborating obvious advantages of such techniques in terms of high extraction efficiency in shorter times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.