Here we report the biological synthesis of CdS fluorescent nanoparticles (Quantum Dots, QDs) by polyextremophile halophilic bacteria isolated from Atacama Salt Flat (Chile), Uyuni Salt Flat (Bolivia) and the Dead Sea (Israel). In particular, a Halobacillus sp. DS2, a strain presenting high resistance to NaCl (3–22%), acidic pH (1–4) and cadmium (CdCl2 MIC: 1,375 mM) was used for QDs biosynthesis studies. Halobacillus sp. synthesize CdS QDs in presence of high NaCl concentrations in a process related with their capacity to generate S2− in these conditions. Biosynthesized QDs were purified, characterized and their stability at different NaCl concentrations determined. Hexagonal nanoparticles with highly defined structures (hexagonal phase), monodisperse size distribution (2–5 nm) and composed by CdS, NaCl and cysteine were determined by TEM, EDX, HRXPS and FTIR. In addition, QDs biosynthesized by Halobacillus sp. DS2 displayed increased tolerance to NaCl when compared to QDs produced chemically or biosynthesized by non-halophilic bacteria. This is the first report of biological synthesis of salt-stable QDs and confirms the potential of using extremophile microorganisms to produce novel nanoparticles. Obtained results constitute a new alternative to improve QDs properties, and as consequence, to increase their industrial and biomedical applications.
Recently, we reported the production of Cadmium sulfide (CdS) fluorescent semiconductor nanoparticles (quantum dots, QDs) by acidophilic bacteria of the Acidithiobacillus genus. Here, we report that the addition of inorganic phosphate to Acidithiobacillus thiooxidans ATCC 19703 cultures favors the biosynthesis of CdS QDs at acidic conditions (pH 3.5). The effect of pH, phosphate and cadmium concentrations on QDs biosynthesis was studied by using Response Surface Methodology (RSM), a multivariate technique for analytical optimization scarcely used in microbiological studies to date. To address how phosphate affects intracellular biosynthesis of CdS QDs, the effect of inorganic phosphate on bacterial cadmium-uptake was evaluated. By measuring intracellular levels of cadmium we determined that phosphate influences the capacity of cells to incorporate this metal. A relation between cadmium tolerance and phosphate concentrations was also determined, suggesting that phosphate participates in the adaptation of bacteria to toxic levels of this metal. In addition, QDs-biosynthesis was also favored by the degradation of intracellular polyphosphates. Altogether, our results indicate that phosphate contributes to A. thiooxidans CdS QDs biosynthesis by influencing cadmium uptake and cadmium tolerance. These QDs may also be acting as a nucleation point for QDs formation at acidic pH. This is the first study reporting the effect of phosphates on QDs biosynthesis and describes a new cadmium-response pathway present in A. thiooxidans and most probably in other bacterial species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.