Summary1. The effects of the present biodiversity crisis have been largely focused on the loss of species. However, a missed component of biodiversity loss that often accompanies or even precedes species disappearance is the extinction of ecological interactions. 2. Here, we propose a novel model that (i) relates the diversity of both species and interactions along a gradient of environmental deterioration and (ii) explores how the rate of loss of ecological functions, and consequently of ecosystem services, can be accelerated or restrained depending on how the rate of species loss covaries with the rate of interactions loss. 3. We find that the loss of species and interactions are decoupled, such that ecological interactions are often lost at a higher rate. This implies that the loss of ecological interactions may occur well before species disappearance, affecting species functionality and ecosystems services at a faster rate than species extinctions. We provide a number of empirical case studies illustrating these points. 4. Our approach emphasizes the importance of focusing on species interactions as the major biodiversity component from which the 'health' of ecosystems depends.
The global increase in the proportion of land cultivated with pollinator‐dependent crops implies increased reliance on pollination services. Yet agricultural practices themselves can profoundly affect pollinator supply and pollination. Extensive monocultures are associated with a limited pollinator supply and reduced pollination, whereas agricultural diversification can enhance both. Therefore, areas where agricultural diversity has increased, or at least been maintained, may better sustain high and more stable productivity of pollinator‐dependent crops. Given that >80% of all crops depend, to varying extents, on insect pollination, a global increase in agricultural pollinator dependence over recent decades might have led to a concomitant increase in agricultural diversification. We evaluated whether an increase in the area of pollinator‐dependent crops has indeed been associated with an increase in agricultural diversity, measured here as crop diversity, at the global, regional, and country scales for the period 1961–2016. Globally, results show a relatively weak and decelerating rise in agricultural diversity over time that was largely decoupled from the strong and continually increasing trend in agricultural dependency on pollinators. At regional and country levels, there was no consistent relationship between temporal changes in pollinator dependence and crop diversification. Instead, our results show heterogeneous responses in which increasing pollinator dependence for some countries and regions has been associated with either an increase or a decrease in agricultural diversity. Particularly worrisome is a rapid expansion of pollinator‐dependent oilseed crops in several countries of the Americas and Asia that has resulted in a decrease in agricultural diversity. In these regions, reliance on pollinators is increasing, yet agricultural practices that undermine pollination services are expanding. Our analysis has thereby identified world regions of particular concern where environmentally damaging practices associated with large‐scale, industrial agriculture threaten key ecosystem services that underlie productivity, in addition to other benefits provided by biodiversity.
Mimulus luteus (Scrophulariaceae) is a perennial herb occurring in the South American Andes that shows a wide variation in the size and shape of a red spot on the lower lobe of the yellow flower. We describe the preference of four insects (three bees and one butterfly) and one hummingbird species for floral characters, and estimated the strength, direction, and form of pollinator‐mediated selection through female fitness. We applied geometric morphometrics to describe the preference of pollinator species for different guide shapes. Our results revealed striking differences in the floral phenotypes preferred by insects and hummingbirds. Insects visited flowers with corollas 1.25‐fold larger and guides 1.72‐fold larger than the hummingbird species did. While insects preferred flowers with nectar guides pointing toward the corolla tube, the hummingbird preferred flowers with heart‐shaped nectar guides. Most of the floral preferences shown by pollinators translated into significant linear and nonlinear selection coefficients. When selection was analyzed on a per‐flower basis and for female fitness, corolla size was under positive directional selection, and nectar guide size and shape were under disruptive selection. Because the insect and hummingbird pollinators showed a strong segregation in their daily activity time, we suggest that current disruptive selection on the nectar guide phenotype can result from the differential availability of the rewarding floral variants over a day. Our findings suggest that pollinator‐mediated selection favoring extreme phenotypes in M. luteus may not only contribute to high nectar guide variation found in this species, but also can promote divergence of corolla and nectar guide traits.
Plant-animal interaction networks provide important information on community organization. One of the most critical assumptions of network analysis is that the observed interaction patterns constitute an adequate sample of the set of interactions present in plant-animal communities. In spite of its importance, few studies have evaluated this assumption, and in consequence, there is no consensus on the sensitivity of network metrics to sampling methodological shortcomings. In this study we examined how variation in sampling completeness influences the estimation of six network metrics frequently used in the literature (connectance, nestedness, modularity, robustness to species loss, path length, and centralization). We analyzed data of 186 flowering plants and 336 pollinator species in 10 networks from a forest-fragmented system in central Chile. Using species-based accumulation curves, we estimated the deviation of network metrics in undersampled communities with respect to exhaustively sampled communities and the effect of network size and sampling evenness on network metrics. Our results indicate that: (1) most metrics were affected by sampling completeness but differed in their sensitivity to sampling effort; (2) nestedness, modularity, and robustness to species loss were less influenced by insufficient sampling than connectance, path length, and centralization; (3) robustness was mildly influenced by sampling evenness. These results caution studies that summarize information from databases with high, or unknown, heterogeneity in sampling effort per species and should stimulate researchers to report sampling intensity to standardize its effects in the search for broad patterns in plant-pollinator networks.
Concerted changes in flower morphology and pollinators provide strong evidence on adaptive evolution. Schizanthus (Solanaceae) has zygomorphic flowers and consists of 12 species of annual or biennial herbs that are distributed mainly in Chile and characterized by bee-, hummingbird-, and moth-pollination syndromes. To infer whether flowers diversified in relation to pollinator shifts, we traced the evolutionary trajectory of flower traits and visitors onto a phylogeny based on sequence data from ITS, waxy, and trnF/ndhJ DNA. Maximum-likelihood ancestral reconstruction of floral traits suggests that ancestral Schizanthus had a bee-pollination syndrome. The hummingbird syndrome evolved in S. grahamii, a high elevation species in the Andes. The moth syndrome evolved in the ancestor of three species that inhabit the Atacama Desert. Results of mapping flower visitors onto the phylogeny show that the shift from bee to hummingbird pollination concurred with a shift in pollinators as predicted by the syndromes. However, the same pattern was not found for the moth syndrome. Visits by moths were observed only in one of the three moth-syndrome species, and at a very low rate. This mismatch suggests either anachronic floral characters or maintenance of rare, imperceptible moth pollination backed up by capacity for autonomous selfing. Overall, results suggest that diversification of flower traits in Schizanthus has occurred in relation to pollinator shifts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.