In this article, we present a passive mixer-first receiver front end providing a low-power integrated solution for high interference robustness in radios targeting Internetof-Things (IoT) applications. The receiver front end employs a novel N-path filter/mixer, a linear baseband amplifier, and a step-up transformer to realize sub-6-dB NF and >20-dBm OB-IIP3 concurrently. The proposed N-path filter/mixer exploits an implicit capacitive stacking principle to achieve passive voltage gain of 3 during down-conversion and high out-ofband linearity simultaneously while using at least 2× less total capacitance for the same RF bandwidth compared to a conventional switch-capacitor N-path filter. Fabricated in 22-nm complementary metal-oxide-semiconductor (CMOS) fully depleted silicon on insulator (FDSOI), the receiver prototype-including a 2:6 transformer-occupies only 0.2 mm 2 of active area. Operating in the frequency range of 1.8-2.8 GHz, the front end provides a 45-47-dB conversion gain and a baseband bandwidth of 2 MHz. Due to passive voltage gain in the filter/mixer and transformer, the implemented front end consumes only 1.7-2.5 mW of power to achieve <6-dB NF, ∼24/60/1 dBm out-of-band IIP3/IIP2/B1dB, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.