Aim: To explore the potential of paclitaxel (PTX)-loaded anacardic acid conjugated hydrophobized gelatin nanoparticles. Materials & methods: Nanoparticles prepared by nanoprecipitation technique were evaluated for various quality attributes (particle size, % entrapment efficiency) in vitro drug release, MCF-7 cell uptake, cell cytotoxicity, in vivo pharmacokinetics, antitumor efficacy and toxicity. Results: The nanoparticles (250–300 nm, 74% entrapment efficiency) showed approximately 2.26-fold higher apoptosis index and approximately 5.86-fold reduction in IC50 value compared with PTX in MCF-7 cells. Also, approximately 3.51- and 1.36-fold increase in area under the curve compared with Intaxel® and Nanoxel™ (both from Fresenius Kabi, Gurugram, India) was achieved. Significant tumor burden reduction (∼60%) and reduced toxicity was observed compared with marketed formulations. Conclusion: The hydrophobized gelatin nanoparticles displayed promising therapeutic potential, paving a new path for efficient PTX delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.