One of the issues that triggers worlds lately is the increasing rate of the unemployment rate. Consequently, this research objective is to compare the most accurate forecast method and to find the most suitable period to predict the future of Malaysia’s unemployment rate in 2016. There are five sets of Malaysia’s unemployment rate and three forecasting methods being used which are Naïve, Simple Exponential Smoothing (SES) and Holt’s method. The forecasting model was then selected based on the smallest accuracy measures. The results indicated that Holt’s is the optimal model in forecasting the overall yearly unemployment rate, male yearly unemployment rate and overall quarterly unemployment rate. Furthermore, for female yearly unemployment rate and overall monthly unemployment rate, the best forecasting method was SES. Meanwhile, the overall unemployment rate of Malaysia in year 2016 was predicted to be 2.9% while 3.4% was estimated to be the value of unemployment rate for second half year of 2016 by using quarterly and monthly data. The forecast value was remained the same as previous year for overall yearly male data and female data which were 2.9% and 3.3% respectively. Lastly, the best period in forecasting Malaysia’s overall unemployment rate was found to be month with the value of 3.4%.
We show that in the current practice of multivariate process variability monitoring, the reliability of Shewhart-type control charts cannot be measured except when the subgroup size n tends to infinity. However, the requirement of large n is meaningless not only in manufacturing industry where n is small but also in service industry where n is moderate. In this paper, we introduce a new definition of control limits in the two most appreciated control charts in the literature, i.e., the improved generalized variance chart (IGV-chart) and vector variance chart (VV-chart). With the new definition of control limits, the reliability of the control charts can be determined. Some important properties of new control limits will be derived and the computational technique of probability of false alarm will be delivered.
Forecasting crude palm oil price is important, particularly when the investors encounter with the increasing risks and uncertainties in the future. Therefore, the aim of this study is to forecast the price of palm oil in Malaysia for the next years based on price for the period of 31 years. The objective of the research is to propose an appropriate model to forecast the CPO price. Thus, this study proposes three types of models, which are namely: Autoregressive Integrated Moving Average (ARIMA), Autoregressive Conditional Heteroskedasticity (ARCH) and Generalized Autoregressive Conditional Heteroskedasticity (GARCH). Akaike Information Criterion (AIC) and Hannan-Quinn Criterion (H-Q) statistic were used to obtain the best model. It was found that ARIMA (2, 1, 5) performed better compared to ARCH and GARCH models. It is concluded that ARIMA (2, 1, 5) can be used as an alternative model to forecast the CPO price.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.