ABSTRACT:Memories are a core part of most of the electronic systems. Performance in terms of speed and power dissipation is the major areas of concern in today's memory technology. In this paper SRAM cells based on 6T, 7T, 8T, and 9T configurations are compared on the basis of performance for read and write operations. Studied results show that the power dissipation in 7T SRAM cell is least among other configurations because this structure uses a single bit for both read and write operations. This SRAM cell also provides the least power delay product among different studied SRAM configurations. Performance in terms of power dissipation and power delay product are least for 7T SRAM cell among the other SRAM configurations in 90nm CMOS technology.
The study aimed to explore sociocultural factors influencing the risk of malaria and practices and beliefs towards malaria prevention, transmission and treatment in a remote village in Khatyad Rural Municipality (KRM) of Nepal. A sequential exploratory mixed methods approach was used. Qualitative data were collected through 25 one-on-one, in-depth interviews followed by a face-to-face household survey (n = 218) among people from a village in KRM believed to have a high risk of malaria. Traditional practices such as Chhaupadi requiring the seclusion of women during menstruation and post-partum, transhumance, and reliance on traditional healers for the management of malaria were common practices in the village. The household survey found 98.1% of women faced menstrual exile either inside the house or in a separate hut, with 64.2% not having access to Long-lasting Insecticidal Nets (LLINs). Hardships and economic constraints compelled villagers to migrate seasonally for work to malaria-endemic areas in India, thereby exposing themselves to the risk of malaria. Persistent traditional beliefs and seasonal migration could threaten the elimination goals set by the national malaria program.
In this paper, an improved single-clock swing-enhanced charge pump circuit is presented. It is an improved version of single-clock swing-enhanced charge pump (SCSECP). We have made certain modifications in the previous SCSECP circuit while keeping the general topology same, and as a result, higher output voltage is achieved. In general, charge pump circuits use the available lowvoltage supply to generate a higher voltage, but in our case, the proposed six-stage charge pump gives an output voltage of 51.70 V at no-load for an input voltage of 1.2 V.
Many user facilities such as synchrotron light sources and free electron lasers require accelerating structures that support electric fields of 10-15 MV/m, especially at the start of the accelerator chain where ceramic insulators are used for very high gradient dc guns. These insulators are difficult to manufacture, require long commissioning times, and often exhibit poor reliability. Two technical approaches to solving this problem will be investigated. Firstly, inverted ceramics offer solutions for reduced gradients between the electrodes and ground. An inverted design will be presented for 350 kV, with maximum gradients in the range of 5-10 MV/m. Axial symmetry is important to minimize emittance growth of the beam, but the replacement of the photo-cathode, in a gun with an inverted ceramic base, presents a significant mechanical engineering problem. Also, any field emission at all from the gun will ionize gases and poison the cathode. Secondly, novel ceramic manufacturing processes will be studied, in order to protect triple junction locations from emission, by applying a coating with a bulk resistivity. The processes for creating this coating will be optimized to provide protection as well as be used to coat a ceramic with an appropriate gradient in bulk resistivity from the vacuum side to the air side of an HV standoff ceramic cylinder. Example insulator designs are being studied through computer modeling, and insulator samples are being manufactured and tested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.