[1] Ten years of sea-surface height (SSH) fields constructed from the merged TOPEX/Poseidon (T/P) and ERS-1/2 altimeter datasets are analyzed to investigate mesoscale variability in the global ocean. The higher resolution of the merged dataset reveals that more than 50% of the variability over much of the World Ocean is accounted for by eddies with amplitudes of 5 -25 cm and diameters of 100-200 km. These eddies propagate nearly due west at approximately the phase speed of nondispersive baroclinic Rossby waves with preferences for slight poleward and equatorward deflection of cyclonic and anticyclonic eddies, respectively. The vast majority of the eddies are found to be nonlinear.
Planetary or Rossby waves are the predominant way in which the ocean adjusts on long (year to decade) timescales. The motion of long planetary waves is westward, at speeds Ն1 cm s Ϫ1. Until recently, very few experimental investigations of such waves were possible because of scarce data. The advent of satellite altimetry has changed the situation considerably. Curiously, the speeds of planetary waves observed by TOPEX/Poseidon are mainly faster than those given by standard linear theory. This paper examines why this should be. It is argued that the major changes to the unperturbed wave speed will be caused by the presence of baroclinic eastwest mean flows, which modify the potential vorticity gradient. Long linear perturbations to such flow satisfy a simple eigenvalue problem (related directly to standard quasigeostrophic theory). Solutions are mostly real, though a few are complex. In simple situations approximate solutions can be obtained analytically. Using archive data, the global problem is treated. Phase speeds similar to those observed are found in most areas, although in the Southern Hemisphere an underestimate of speed by the theory remains. Thus, the presence of baroclinic mean flow is sufficient to account for the majority of the observed speeds. It is shown that phase speed changes are produced mainly by (vertical) mode-2 east-west velocities, with mode-1 having little or no effect. Inclusion of the mean barotropic flow from a global eddy-admitting model makes only a small modification to the fit with observations; whether the fit is improved is equivocal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.