Electrospinning gives rise to polymer nanofibers. The spinning process is characterized by strong deformations of the polymer material taking place during the spinning process and a very rapid structure formation process happening within milliseconds. We were interested in the influence of the peculiar spinning process on the structures of nanofibers. For this purpose, we analyzed the internal structures of nanofibers spun from polyamide-6 and polylactide with an average diameter of about 50 nm. The fibers were partially crystalline, with degrees of crystallinity not significantly smaller than those found for less rapidly quenched and much thicker melt-extruded fibers. The annealing of polyamide fibers at elevated temperatures resulted in a transformation from the disordered ␥ modification to the more highly ordered ␣ modification, and this again was in close agreement with the response of melt-extruded fibers. The orientation of the crystals along the fiber axis was strongly inhomogeneous: it was, on average, very weak, yet it could be quite pronounced locally. Small elongations of approximately 10% resulted in well-developed homogeneous crystal orientations.
Herein we demonstrate the ability to fabricate polymeric microtubes with an inner diameter of approximately 3 microm through co-electrospinning of core and shell polymeric solutions. The mechanism by which the core/shell structure is transformed into hollow fibers (microtubes) is primarily based on the evaporation of the core solution through the shell and is described here in detail. Additionally, we present the filling of these microtubes, thus demonstrating their possible use in microfluidics. We also report the incorporation of a protein (green fluorescent protein) within such fibers, which is of interest for sensorics.
Tissue engineering involves the in vitro seeding of cells onto scaffolds which assume the role of supporting cell adhesion, migration, proliferation, and differentiation, and which define the three-dimensional shape of the tissue to be engineered. Among the various types of scaffold architectures available, scaffolds based on nanofibers mimicking to a certain extent the structure of the extracellular matrix offer great advantages. Electrospinning is the technique of choice for the preparation of such scaffolds. Investigations have revealed that the nanofibrous structure promotes cell adhesion, proliferation, and differentiation. Parameters relevant for these processes such as fiber diameters, surface topology, porosity, mechanical properties, and the fibrous architecture of the scaffold can be controlled by electrospinning in a broad range.
Nanofibers and nanotubes based on polymers offer a broad range of applications in areas such as photonics, sensorics, catalysis or medicine and pharmacy. A set of preparation techniques which allow to introduce simultaneous specific functions into such nanoobjects has been developed recently. These include electrospinning and co‐electrospinning of nanofibers as well as template methods utilizing eletrospun nanofibers or porous substrates. These techniques yield infinitively long nanofibers and nanotubes with well defined aspect ratios respectively with diameters down to a few ten nanometers. These nanofibers and nanotubes can be functionalised, among others by using biodegradable materials or via the incorporation of nanoparticles or precursor molecules, in such a way that applications for tissue engineering, for catalysis, photonics and sensorics become available. Copyright © 2005 John Wiley & Sons, Ltd.
IntroductionAdequate migration and differentiation of mesenchymal stem cells is essential for regeneration of large bone defects. To achieve this, modern graft materials are becoming increasingly important. Among them, electrospun nanofiber scaffolds are a promising approach, because of their high physical porosity and potential to mimic the extracellular matrix (ECM).Materials and MethodsThe objective of the present study was to examine the impact of electrospun PLLA nanofiber scaffolds on bone formation in vivo, using a critical size rat calvarial defect model. In addition we analyzed whether direct incorporation of bone morphogenetic protein 2 (BMP-2) into nanofibers could enhance the osteoinductivity of the scaffolds. Two critical size calvarial defects (5 mm) were created in the parietal bones of adult male Sprague-Dawley rats. Defects were either (1) left unfilled, or treated with (2) bovine spongiosa, (3) PLLA scaffolds alone or (4) PLLA/BMP-2 scaffolds. Cranial CT-scans were taken at fixed intervals in vivo. Specimens obtained after euthanasia were processed for histology, histomorphometry and immunostaining (Osteocalcin, BMP-2 and Smad5).ResultsPLLA scaffolds were well colonized with cells after implantation, but only showed marginal ossification. PLLA/BMP-2 scaffolds showed much better bone regeneration and several ossification foci were observed throughout the defect. PLLA/BMP-2 scaffolds also stimulated significantly faster bone regeneration during the first eight weeks compared to bovine spongiosa. However, no significant differences between these two scaffolds could be observed after twelve weeks. Expression of osteogenic marker proteins in PLLA/BMP-2 scaffolds continuously increased throughout the observation period. After twelve weeks osteocalcin, BMP-2 and Smad5 were all significantly higher in the PLLA/BMP-2 group than in all other groups.ConclusionElectrospun PLLA nanofibers facilitate colonization of bone defects, while their use in combination with BMP-2 also increases bone regeneration in vivo and thus combines osteoconductivity of the scaffold with the ability to maintain an adequate osteogenic stimulus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.