Medical application of rapid prototyping is feasible for specialized surgical planning and prosthetics applications and has significant potential for development of new medical applications.
• Students provided with cadaver CT scans achieved 27 % higher scores in anatomy. • Radiological education integrated into gross anatomy is highly appreciated by medical students. • Simultaneous physical and virtual dissection provide unique conditions to study anatomy.
We developed a new approach to produce individual immobilization devices for the head based on MRI data and 3D printing technologies. The purpose of this study was to determine positioning accuracy with healthy volunteers.3D MRI data of the head were acquired for 8 volunteers. In-house developed software processed the image data to generate a surface mesh model of the immobilization mask. After adding an interface for the couch, the fixation setup was materialized using a 3D printer with acrylonitrile butadiene styrene (ABS). Repeated MRI datasets (n=10) were acquired for all volunteers wearing their masks thus simulating a setup for multiple fractions. Using automatic image-to-image registration, displacements of the head were calculated relative to the first dataset (6 degrees of freedom).The production process has been described in detail. The absolute lateral (x), vertical (y) and longitudinal (z) translations ranged between −0.7 and 0.5 mm, −1.8 and 1.4 mm, and −1.6 and 2.4 mm, respectively. The absolute rotations for pitch (x), yaw (y) and roll (z) ranged between −0.9 and 0.8°, −0.5 and 1.1°, and −0.6 and 0.8°, respectively. The mean 3D displacement was 0.9 mm with a standard deviation (SD) of the systematic and random error of 0.2 mm and 0.5 mm, respectively.In conclusion, an almost entirely automated production process of 3D printed immobilization masks for the head derived from MRI data was established. A high level of setup accuracy was demonstrated in a volunteer cohort. Future research will have to focus on workflow optimization and clinical evaluation.
To assess spatial and temporal pressure characteristics in patients with repaired aortic coarctation compared to young healthy volunteers using time-resolved velocity-encoded three-dimensional phase-contrast magnetic resonance imaging (4D flow MRI) and derived 4D pressure difference maps. After in vitro validation against invasive catheterization as gold standard, 4D flow MRI of the thoracic aorta was performed at 1.5T in 13 consecutive patients after aortic coarctation repair without recoarctation and 13 healthy volunteers. Using in-house developed processing software, 4D pressure difference maps were computed based on the Navier-Stokes equation. Pressure difference amplitudes, maximum slope of pressure amplitudes and spatial pressure range at mid systole were retrospectively measured by three readers, and twice by one reader to assess inter- and intraobserver agreement. In vitro, pressure differences derived from 4D flow MRI showed excellent agreement to invasive catheter measurements. In vivo, pressure difference amplitudes, maximum slope of pressure difference amplitudes and spatial pressure range at mid systole were significantly increased in patients compared to volunteers in the aortic arch, the proximal descending and the distal descending thoracic aorta (p < 0.05). Greatest differences occurred in the proximal descending aorta with values of the three parameters for patients versus volunteers being 19.7 ± 7.5 versus 10.0 ± 2.0 (p < 0.001), 10.9 ± 10.4 versus 1.9 ± 0.4 (p = 0.002), and 8.7 ± 6.3 versus 1.6 ± 0.9 (p < 0.001). Inter- and intraobserver agreements were excellent (p < 0.001). Noninvasive 4D pressure difference mapping derived from 4D flow MRI enables detection of altered intraluminal aortic pressures and showed significant spatial and temporal changes in patients with repaired aortic coarctation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.