A round robin comparison of freeform form measurements was carried out by the project partners and stakeholders of a European metrology research project. Altogether six measuring instruments were considered: five different (pointwise and areal) optical devices and one tactile device. Three optical freeform surfaces were used for the comparison measurements, where two specimens were measured by five instruments and one specimen by four instruments. In this paper, the evaluation methods and results of this round robin are presented for the three freeform surfaces made from a temperature-stable material, Super Invar ®. The freeforms had diameters of 40 mm, 50 mm and 100 mm and best-fit radii of 39.75 mm (convex), 40.9 mm (convex) and 423.5 mm (concave). For comparison, the bilateral pointwise differences between the available measurements were calculated. The root-mean-square values of these differences ranged from 15 nm to 110 nm (neglecting spherical contributions) and provided an insight into the status of typical freeform measurement capabilities for optical surfaces.
Interferometric determination of sphere radii is a well known technique. To keep accuracy high and uncertainties low, a precisely controlled environment is usually necessary. Environmental changes in temperature lead to time dependent drift in important measurement parameters and to disturbed results. We present a method to minimize time dependent drift to the first order. With this method, it is either possible to reduce the uncertainties further, or to relax environmental conditions and still be able to accomplish high precision measurements. We discuss two typical measurement configurations, the associated benefits and drawbacks and some relevant error sources.
Tilted Wave Interferometry (TWI) is a measurement technique for fast and flexible interferometric testing of aspheres and freeform surfaces. The first version of the tilted wave principle was implemented in a Twyman-Green type setup with separate reference arm, which is intrinsically susceptible to environmentally induced phase disturbances. In this contribution we present the TWI in a new robust common-path (Fizeau) configuration. The implementation of the Tilted Wave Fizeau Interferometer requires a new approach in illumination, calibration and evaluation. Measurements of two aspheres and a freeform surface show the flexibility and also the increased stability in both phase raw data and surface measurements, which leads to a reduced repeatability up to a factor of three. The novel configuration significantly relaxes the tolerances of the imaging optics used in the interferometer. We demonstrate this using simulations on calibration measurements, where we see an improvement of one order of magnitude compared to the classical Twyman-Green TWI approach and the capability to compensate higher order error contributions on the used optics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.